

Attestation of System Components v1.0
Requirements and Recommendations

EDITOR: Elaine Palmer, IBM Corporation

CONTRIBUTORS:
Yigal Edery, Kameleon
Joe Foster, Microchip
Ahmed Abbas Hassan, CyShield
Brett Henning, Broadcom, Inc.
Bryan Kelly, Microsoft
Nate Klein, Google
Jubin Mehta, Facebook, Inc.
Alberto Munoz, Intel Corporation
Rajeev Sharma, Open Compute Project
Wojtek Powiertowski, Facebook, Inc.
Eric Spada, Broadcom, Inc.
Ben Stoltz, Google

Page 2

Revision History

Revision Date Guiding Contributor(s) Description

1.0 2020-11-04 Elaine Palmer, IBM Corporation Initial Release

Page 3

Executive Summary
The environment.​ In cloud data centers, servers are filled with a plethora of subsystems, peripherals,
accelerators, hardware, and firmware from multiple global suppliers. To add to the complexity, those
servers are typically configured on demand.

The problem to be solved.​ Until this document, servers had no standardized, open, and automated
mechanism to dynamically establish and verify trust in those products. For example, does a network
adapter still contain the initial firmware that was installed by its manufacturer? Has the latest security
patch been applied to the firmware in a memory controller? Which country’s certified cryptographic
algorithms are implemented in a storage unit? Cloud service providers cannot rely on procurement
agreements alone to assure that the products they buy are secure. These products must be protected
during design, development, manufacture, testing, shipping, provisioning, installation, and operation.

The Open Compute Project solution.​ This document presents a design for dynamically establishing
and verifying trust in the components in a server. In this design, a platform (e.g., server, baseboard
management controller, or trusted external service acting in this role) communicates with attester
devices (e.g., roots of trust for subsystems and adapters) to determine whether or not the device is
trustworthy.

The platform must:

1. Determine which devices are present
2. Collect measurements (e.g., firmware version and cryptographic functions) from each device
3. Verify the device’s certificate(s) and the certificate chain back to a trusted root
4. Verify the device’s digital signature over the measurements
5. Either accept the device or decide on a remedial action

The attester device must:

1. Contain a tamper-protected, immutable hardware root of trust
2. Be provisioned with a unique identity, firmware, and cryptographic keys in a secure facility
3. Implement secure boot, executing only digitally signed and verified firmware
4. Respond to platform requests for digitally signed measurements (evidence) of the device’s

configuration.

This document identifies required and optional functionality for platforms and attester devices.
Feedback on version 1.0 of this document is invited, especially from vendors implementing it.

Page 4

Table of Contents
Executive Summary 3
Purpose 5
Audience 5
Syntax and conventions 5
Requirements, Recommendations, and Choices 5

REQUIREMENTS - Conformance Statement 5

Introduction 6
Platforms, Attesters, and Verifiers 6

Interactions Between Verifiers and Attesters 7

Supply Chain Assurance 8

Keys, seeds, and device identifiers 9
REQUIREMENTS - Keys, Entropy, and Random Bits 11

Certificate chains and credentials 12
Protocols 13

Participants 13

Provisioning Facility 13

REQUIREMENTS - Initial Provisioning Environment, Operations, and Equipment 18

Device Ownership Provisioning 19

REQUIREMENTS - Device Ownership Provisioning 19

Discovery and Interrogation protocol 21

REQUIREMENTS - Discovery and Interrogation 22

Authentication, Attestation, and Enrollment protocol 23

REQUIREMENTS - Authentication, Attestation, and Enrollment 25

REQUIREMENTS - SPDM Standards Support 25

Measurement collection and storage 27
REQUIREMENTS - What to measure and what not to measure 27

REQUIREMENTS - Security-relevant configuration data 27

REQUIREMENTS - When to Measure 28

Policies 29
Glossary and Abbreviations 30
Relevant standards, guidelines, and documents 30
License 31
About Open Compute Foundation 32
Appendix A - Summary of Requirements and Recommendations 33

Page 5

1. Purpose
This document is intended to create a specification for the functionality and interoperability
of attestation operations. These operations produce information about the ownership and
configuration of systems (servers) and system components (devices). This document is part of
a larger specification created by the OCP Security Project.

2. Audience
The audience for this document includes, but is not limited to, system and system component
designers, security information and event management (SIEM) system developers, and cloud
service providers.

3. Syntax and conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in ​BCP 14​ [​RFC2119​] [​RFC8174​] when, and only
when, they appear in all capitals, as shown here.

The roles “attester”, “verifier”, and “reference integrity measurements” are defined in the
draft ​Reference Terminology for Attestation Procedures​.

4. Requirements, Recommendations, and Choices
Critical requirements, recommendations, and choices described in this document are
highlighted ​in this style.

4.1. REQUIREMENTS - Conformance Statement

The manufacturer / Provisioner ​MUST ​provide a statement of conformance describing how the
attester device satisfies the critical requirements, follows the recommendations, and selects
from the choices allowed by this document.

https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174
https://github.com/henkbirkholz/draft-birkholz-attestation-terminology

Page 6

5. Introduction

5.1. Platforms, Attesters, and Verifiers

A platform verifier (a system such as a server, a storage controller, or a trusted service acting
in this role) must assess the trustworthiness of the devices within a platform (physically or
logically). It must also determine whether to admit the devices into the platform in their full
capacity, admit them in a reduced capacity, exclude them entirely, or disable them. In order
to make this determination, it uses attestation from the devices to reliably ascertain their
trustworthiness. In this specification, certain devices within a platform are the attesters.
Reliability of attestation (over and above simple logs) is established by using proven industry
standard cryptographic methods to mitigate unscrupulous behaviors such as (but not limited
to) the “lying endpoint” and the “man-in-the-middle”.

An attester is a collection of hardware, software, firmware, and a root of trust (RoT) with the
ability to provide reliable evidence of trustworthiness (i.e. measurements) to the verifier. For
example, an attester may be a network interface controller (NIC), redundant array of
independent disks (RAID) controller, or non-volatile memory express (NVMe) solid state drive
(SSD). An attester’s RoT may be a discrete component with its own firmware and policy,
separate from the device it attests.

The relationship between a platform, verifier, and attester is shown in the platform attestation
UML model below. A platform ​must have its own RoT and a verifier that can verify attestations
from attester devices. The platform’s RoT and verifier may reside in the main processing unit,
in a trusted baseboard management controller (BMC), in a dedicated device, or trusted
service​.

Notice that in this model, attestation is not hierarchical. That is, an attester does not include
other attesters, and it is not responsible for verifying another attester attached to it.
However, attested devices may act as a bridge, with the responsibility of relaying
communication between an attester and a verifier. For example a PCIe bridge may relay
communication from a NVMe SSD attached to it, but it is not responsible for verifying the

Figure 1. Platform Attestation UML Model

Page 7

trustworthiness of it. Other examples of bridges include host bus adapters (HBAs), RAID
controllers, and NICs.

The detailed content (hardware, software, and firmware) of an attester is out of scope of this
specification. However within a platform, there are natural attester boundaries - such as PCIe
Card Electromechanical (CEM) form factors, Enterprise & Data Center SSD Form Factor
(EDSFF), a SPI bus connecting the attester RoT to its attested device, etc. (generally called field
replaceable units).

5.2. Interactions Between Verifiers and Attesters

The figure below is an overview of interactions that may take place between platform verifiers
and attesters. Details of these interactions appear later in this specification.

Each attester device must have a root of trust (RoT). Its RoT is trusted to calculate 1

measurements of the security state of the attester device (e.g., firmware digests, boot
parameters, etc.). At a minimum, the RoT is responsible for measuring and reporting the
security state of the lowest layer of firmware and the initial security-relevant data in the
attester device. Additional layers of firmware measure and record subsequent layers, prior to
executing them.

The attester device reports its identity and its measurements to the verifier, which collects and
verifies them. The platform verifier may “pull” the measurements from the attester, or the
attester may “push” the measurements to the platform verifier. Verification typically involves
verifying a digital signature applied by the attester device’s RoT, and comparing the reported
measurements against a reference manifest. The reference manifest may include, for
example, a list of allowed device identities, or a list of hashes of known good firmware for
attester devices. Based on the results of the verification, the platform decides what to do with
the attested device, e.g., admit it, repair it, isolate or “fence” it, or disable it.

1 Establishment of the root of trust is outside the scope of this document.

Page 8

The communication between the attester device’s RoT and the verifier, and between the
reference repository and the verifier must be secure against man-in-the-middle attacks, replay
attacks, spoofing, and undetected modification.

Attestation may be performed any time during the lifecycle of the platform: during the
provisioning process, at initial deployment, periodically while the platform is deployed, at
redeployment, or during decommissioning.

Because the degree of certainty needed to establish trustworthiness is a balance between risk
tolerance, cost, and ease of use, this specification permits multiple methods of:

1. Establishing the Root of Trust (RoT)
2. Measuring attester state
3. Reporting measured attester state for consumption by the verifier
4. Communicating expected attester state to the verifier
5. Verifying the identity of the attester
6. Verifying the measured attester state
7. Mitigating an untrustworthy attester

5.3. Supply Chain Assurance

Security-critical components in platforms and attester devices should be designed assuming a
security-hostile manufacturing environment and should be protected as early as possible in
the supply chain. ​Key material should be protected end-to-end, assuming manufacturing
networks are fully compromised. ​Safeguards include, but are not limited to securing
provisioning facilities, limiting physical access, disabling hardware debug interfaces (e.g.,
JTAG), maintaining chain of custody, auditing quantities of production and scrapped
components, protecting firmware development systems, digitally signing firmware, protecting
and limiting access to key material, and enabling secure boot. An extensive list of
recommendations for securing the supply chain appears in ​Secure Firmware Development
Best Practices​ and ​Secure Device Manufacturing: Supply Chain Security Resilience​.

At points in the supply chain, provisioning operations establish an attester device’s unique
identity and its Device Owner. The Device Owner puts the device into service and determines
the authority to update the device. Details of these operations appear later in this
specification.

Device ownership may transition from the initial owner, to interim owners, and eventually to
the final Device Owner. For example, during final testing, a manufacturing facility may
temporarily establish ownership of a device to enable frequent replacement of the firmware.
Eventually, it may transfer device ownership to a final customer. The following are common
models for changing ownership:

● Send the device back to provisioning to be changed
● Generate​ ​new ownership credentials in the field (back to factory state)
● Transfer ownership as directed by the current owner

https://www.opencompute.org/documents/csis-firmware-security-best-practices-position-paper-version-1-0-pdf
https://www.opencompute.org/documents/csis-firmware-security-best-practices-position-paper-version-1-0-pdf
https://www.nccgroup.trust/uk/our-research/secure-device-manufacturing-supply-chain-security-resilience/

Page 9

The following ​white paper​ and ​presentation​ discuss those and additional approaches to
changing ownership.

6. Keys, seeds, and device identifiers
The table below lists the keys, random seeds, and device identifiers used in this document. Official
sources of information on cryptographic algorithms, key types, key strength, and cryptoperiods are
listed in the section ​REQUIREMENTS - Keys, Entropy, and Random Bits​ below. Helpful, but unofficial
information is available in D. Giry’s interactive article ​Cryptographic Key Length Recommendation​.

Short
name

Long name,
symbol used in
protocols

Key Type / Key
Usage

Purpose Stored where?

Protections Where
generated /
created

How initialized Revocable or
updated in field?
Under what
authority?

Value
registered or
recorded?
Usage
auditable?

UDS Unique Device
secret

Seed​ value
generated by
random bit
generator
(RBG) e.g.,
primary seed

Input to key
generation
function
according to
NIST
SP800-133

Device
persistent
protected store
or regenerated
deterministically
on power up

read forbidden
except by key
generation
function

write forbidden
after
provisioning

In device or
in secure
provisioning
facility

Self-generated
by device or
injected during
provisioning

Not
recommended

Allowed only
by device
Provisioner to
assure device
provenance

no

DevIK​pr

Device identity
private key

Private
authentication
key

Unique for
each device

Used to sign
certificate for
DevAK​pub ​and
tie DevAK​pr
to device
identity

Device
persistent
store or
regenerated
on demand

read forbidden
after mfg
except by the
signing
operation

write forbidden
after
provisioning

During
device
provisioning

Generated on
board by key
generation
function using
UDS or
injected during
provisioning
(optionally
DICE
compliant)

Not
recommended

Allowed only
by device
Provisioner to
assure device
provenance

no

DevIK​pub Device identity
public key

Public
authentication
key /

digitalSignature

Used to
verify device
identity

X.509 Cert for
public key in
device
persistent
store or
external to
device

write forbidden
after mfg

During
device
provisioning

Same as
DevIK​pr

Not
recommended

Allowed only
by device
Provisioner to
assure device
provenance

Recorded
by platform
at discovery

DevAK​pr

Device
attestation
private key

Private
signature key

Used when
attesting
device state

Device
persistent
store or
regenerated
on demand

read forbidden
after mfg
except by the
signing
operation

write forbidden
after
provisioning
except when
triggered by
Device Owner

During
device
provisioning

Generated on
board by key
generation
function
(optionally
DICE
compliant)

yes

by Device
Owner

no

DevAK​pub

Device
attestation
public key

Public signature -
verification key

digitalSignature,
contentCommit-
ment

Used when
verifying
device state

X.509 Cert for
public key in
device persistent
store or external
to device

write forbidden
after
provisioning
except when
triggered by
Device Owner

During
device
provisioning

Same as
DevAK​pr

yes

by Device
Owner

Recorded by
platform at
discovery

pCA​pr

Provisioner’s
Certificate
Authority
private key

Private
authentication
key

Used to sign
certificate for
DevIK​pub

pCA’s HSM
for private key

HSM pCA’s HSM pCA’s HSM Revocable by
Provisioner

Audit
number of
certificates
signed

https://www.opencompute.org/documents/ibm-white-paper-ownership-and-control-of-firmware-in-open-compute-project-devices
https://www.youtube.com/watch?v=59mM6hnUiKE
https://www.keylength.com/en/4
https://csrc.nist.gov/glossary/term/RBG_seed
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2

Page 10

pCA​pub Provisioner’s
Certificate
Authority
public key

Public
authentication
key /

keyCertSign

Used to
verify
certificate for
DevIK​pub

X.509 Cert for
public key

 pCA’s HSM pCA’s HSM Certificate
revocation list
made
available to
platform

Recorded in
platform in
advance of
or during
device
discovery

Short
name

Long name,
symbol used
in protocols

Key Type / Key
Usage

Purpose Stored where?

Protections Where
generated /
created

How initialized Revocable or
updated in field?
Under what
authority?

Value
registered or
recorded?
Usage
auditable?

DevOwnCA​pr Device
Owner’s
Certificate
Authority
private key

Private
authentication
key

Used to sign
alternate
certificate for
DevIK​pub

DevOwn CA’s
HSM for
private key

HSM DevOwn
CA’s HSM

DevOwn CA’s
HSM

Revocable by
Device Owner

Audit
number of
certificates
signed

DevOwnCA​pub Device
Owner’s
Certificate
Authority
public key

Public
authentication
key /

keyCertSign

Used to
verify
alternate
certificate for
DevIK​pub

X.509 Cert
for public key
stored on or
off device

 DevOwn
CA’s HSM

DevOwn CA’s
HSM

Revoked by
Device Owner’s
CA or removed
from platform if
Device Owner
changes

Recorded
in platform
in advance
of or
during
device
discovery

DevUpdtK​pr Device
Update
private key

Private
authorization
key

Used to
authorize
updates to
device’s
critical
configuration

Device
Updater’s
HSM for
private key

HSM Device
Updater’s
HSM

Device
Updater’s
HSM

Revocable by
device updater

Audit all
device
updates
that were
signed /
authorized

DevUpdtK​pub Device
Update
public key

Public
authorization
key

digitalSignature,
contentCommit-
ment

Used to
verify
updates to
device’s
critical
configuration

Device
persistent
store

Authenticated
update

Device
Updater’s
HSM

When
provisioned
or when
deployed by
Device Owner

Removed at
change in
ownership or
by
device-specific
mechanism

May be
attested

FWKeys
Manifest

Key
Manifest
(for secure
boot)

List of Public
authentication
keys

Used to
contain list
of
FWSignK​pub

Device
persistent
store

Write authorized
only by
DevUpdtK​pr

Device
Updater’s
deployment
system

When
provisioned
or when
deployed by
Device Owner

Revocable by
device updater

Audit all
key
manifests
that were
signed /
authorized

FWSignK​pr Firmware
Signer’s
private
key(s)

Private
authentication
key

Used to sign
firmware or
critical data

Firmware
signer’s HSM

HSM Firmware
Signer’s
HSM

Firmware
Signer’s HSM

Revocable by
Firmware
Signer

Audit all
firmware
that was
signed

FWSignK​pub Firmware
Signer’s
public
key(s)

Public
authentication
key

digitalSignature,
contentCommit-
ment,
codeSigning

Used to
verify
signature on
firmware or
critical data

Device
persistent
store or Key
manifest

Write authorized
only by
DevUpdtK​pr

Firmware
Signer’s
HSM

Delivered in
Key Manifest

Removal from
device
authorized by
DevUpdtK​pr

May be
attested

Page 11

6.2. REQUIREMENTS - Keys, Entropy, and Random Bits

Symmetric keys, asymmetric keys, entropy, and random bits in the key table above ​MUST

● Follow recommendations in ​NIST Special Publication 800-57 Recommendation for Key

Management

● Follow recommendations in ​NIST Special Publication 800-90A, Recommendation for
Random Number Generation Using Deterministic Random Bit Generators

● Follow recommendations in ​NIST Special Publication 800-90B, Recommendation for the

Entropy Sources Used for Random Bit Generation

● Follow recommendations in ​NIST Special Publication 800-133 Recommendation for
Cryptographic Key Generation

● Follow the guidance in the ​Commercial National Security Algorithm (CNSA) Suite
regarding quantum resistant algorithms and key sizes.

● Provide a statement of minimum key strength and cryptoperiods of the values in the key
table above.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

Page 12

7. Certificate chains and credentials
The figure below depicts certificate chains that link the keys associated with an attester
device. Three credentials (drawn in bold lines) are either stored or dynamically generated
onboard the device: the Device Identity Key certificate, chained to the Provisioner, the Device
Attestation Key certificate, chained to the Device Identity key, and the Device Update public
key. The most common configuration is shown in the two outer columns. The middle column
shows an alternative configuration in which the
Device Owner adds to or replaces the Provisioner’s certificate chain prior to putting the device
in service. Note that if the Device Owner replaces the original certificate chain (perhaps
because there is not enough storage in which to keep it), then the device cannot be reset
securely in the field to its initial, post-provisioning state. Instead, it must be returned to the
Provisioner to restore the Provisioner’s root and certificate chain.

Page 13

8. Protocols

8.1. Participants

In this specification, the following organizations and equipment participate in the protocols:

● Attester Device
● Attester Device Provisioner
● Attester Device Provisioner’s Certificate Authority
● Certificate Registry
● Device Registry
● Device Owner
● Platform
● Verifier

A platform verifier uses the protocols described in this specification to communicate with
attester devices to determine whether or not to trust those devices and allow them into the
system. These protocols, however, do not describe how the platform verifier actually makes
that determination. Some common ways to establish trust include one or more of the
following acceptance criteria:

● device certificates chain back to a trusted root certificate authority
● device is certified by a vendor with whom there is a business relationship
● device measurements match a predetermined list (manifest) of measurements
● device accepted on first use, and subsequent measurements match the first

8.2. Provisioning Facility

An attester device Provisioner provisions the attester device with a unique device secret, a
unique device id key pair, and a corresponding certificate.

Provisioning establishes the ​hardware root of trust and the unique, unclonable, and
immutable identity of an attester device​. It also creates the device’s initial credentials. Use
cases for these and subsequent credentials are described in ​TCG TPM 2.0 Provisioning
Guidance​, Section 5.1, “Identity,” and Section 5.3, “Attestation of Firmware Integrity
Measurements.”

The participants in this operation are the Provisioner’s certification authority (pCA) and the
device. An additional participant in this protocol is an optional secure value generator.

Often, however, Provisioners prefer to generate secure values offline and inject (aka “squirt”)
them into the device. Provisioners prefer to use injection instead of self-generation, because
they can use external processes that are much faster at generating keys and deterministic
random bits.

https://trustedcomputinggroup.org/wp-content/uploads/TCG-TPM-v2.0-Provisioning-Guidance-Published-v1r1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-TPM-v2.0-Provisioning-Guidance-Published-v1r1.pdf

Page 14

Additionally, external processes can perform more extensive entropy tests that a single device
might pass, but multiple devices would fail collectively. Thus, there are trade-offs among the 2

throughput of provisioning processes, protection of secure values, and assurance that secure
values are properly generated.

The figure above illustrates the provisioning of secrets, device identity, device identity and
attestation key pairs, the Provisioner’s identity, the Device Owner’s certificate, and the device
update public key. The left to right arrows in the middle row show the progression of an
attester device through the provisioning process.

Provisioning step 1​ shows two methods of generating the device’s unique device secret
(UDS): 1) a device generates its own secret, or 2) a hardware security module (HSM) generates
it, for later injection into the device. Injecting the UDS exposes it to potential attacks that are
not present (or minimized) when the device generates the UDS on its own. Therefore, it is
recommended that each attester device generates its own UDS.

In ​provisioning step 2​, the UDS is provided as input to a key generation function, which
generates a unique device identity key pair (DevIK​pub,pr​). The device identity key can be
thought of as a “trustworthy serial number.” In some devices, the device identity key never
changes throughout the lifetime of the device. In others, the device identity key will change if
the UDS or the cryptographic identity of the first mutable firmware changes.

Provisioning step 2 shows two methods of generating the device’s identity key pair:

1. A device generates its own keypair, then sends the public key to the Provisioner, or
2. the Provisioner’s HSM generates it, for later injection into the device.

2 ​Bernstein D.J. et al. (2013) Factoring RSA Keys from Certified Smart Cards: Coppersmith in the Wild. In: Sako K.,
Sarkar P. (eds) Advances in Cryptology - ASIACRYPT 2013. ASIACRYPT 2013. Lecture Notes in Computer Science,
vol 8270. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18

Page 15

In either method, the Provisioner’s HSM, which is a component of the Provisioner’s Certificate
Authority (pCA), signs a certificate for the device identity public key (DevIK​pub​).

Some devices may simplify the generation of the device identity key pair by following the
Device Identifier Composition Engine (DICE) architecture (see ​TCG Implicit Identity Based
Device Attestation​). In DICE, additional values, such as the Compound Device Identifier are
incorporated into the key generation function.

Note that injecting the device identity private key exposes it to potential attacks that are not
present (or minimized) when the device generates the key pair on its own. Therefore, it is
recommended that each attester device generates its own identity key pair. There is a
performance benefit to generating the key pair externally: The key pair and certificate for the
public key can be created at the same time, without having to wait for the attester device to
send the public key to the Provisioner.

For those familiar with TPMs, provisioning step 2 is somewhat similar to creating the
endorsement key, EK, except that there is no concern for anonymity when using the DevIK.

In ​provisioning step 3​, the device records the Provisioner’s authorization of the device’s
identity key pair (an X.509 certificate signed by the Provisioner). The Provisioner may
optionally record an initial device updater’s public key. This key may be temporary, such as
one used to verify the signature of manufacturing test key manifests, or an interim one until
the Device Owner replaces it later. Alternatively, the Provisioner may record a device
updater’s key and lock it permanently in the device.

In ​provisioning step 4​, the device uses an initial random secret to generate a device
attestation key pair (DevAK​pu​, DevAK​pr​). As in provisioning step 2, the key generation function
may optionally follow the DICE architecture. The device fills in a certificate template with the
attestation public key, then signs the certificate using DevIK​pr​.

In ​provisioning step 5​, the Device Owner establishes ownership of the device (see “Device
Ownership Provisioning” below).

In ​provisioning step 6​, the Device Owner provides the device update public key, and the
device records it to use later to verify signatures on updates to its critical configuration.

https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf

Page 16

The protocol diagram above shows the interaction between a newly manufactured attester
device and a Provisioner, as they interact to provision the identity credentials for a device. In
this interaction, the device creates its own unique device secret (UDS). There are no
challenge-responses, because there is not yet a root of trust in the device on which the pCA
can rely. The benefit of this approach is that the UDS is never exposed outside of the device.

Page 17

The protocol diagram above shows a variation of the interaction between a newly
manufactured attester device and a Provisioner. In this interaction, the Provisioner creates
the unique device secret (UDS), and both the Provisioner and the device use it as input to a key
generation function to derive the device’s unique identity keypair. The benefit of this
approach is that a certificate authority is not required on the manufacturing line. The
drawback is that the UDS is vulnerable to disclosure at the Provisioner’s site.

Page 18

8.2.1. REQUIREMENTS - Initial Provisioning Environment, Operations, and
Equipment

● Initial provisioning operations ​MUST ​be carried out in a trusted facility, in which a

secure channel between the Provisioner and the device is guaranteed.

● The Provisioner ​MUST ​report which of the following provisioning methods is used:
{attester device self-generates both UDS and DevIK​pr ​,
Provisioner injects UDS and device self-generates DevIK​pr ​, or
Provisioner injects both UDS and DevIK​pr ​}.

● Cryptographic algorithms and deterministic random bit generators ​MUST​ be validated

under the ​NIST Cryptographic Algorithm Validation Program (CAVP)

● Cryptographic modules, if used, ​SHOULD​ be validated at overall level 2 or higher under
FIPS 140-2 SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES​ or ​Security
Requirements for Cryptographic Modules, FIPS 140-3

● Entropy, random bits, symmetric keys, and private asymmetric keys ​MUST ​be generated
within the attester device itself, in a hardware security module, or locally, in a device
with the following properties:

○ Follows recommendations in ​NIST Special Publication 800-90A Rev 1,
Recommendation for Random Number Generation Using Deterministic Random
Bit Generators

○ Follows recommendations in ​NIST Special Publication 800-90B,
Recommendation for the Entropy Sources Used for Random Bit Generation

○ Follows recommendations in ​NIST Special Publication 800-133 Recommendation
for Cryptographic Key Generation

○ Complies with ​Annex C: Approved Random Number Generators for FIPS PUB
140-2, Security Requirements for Cryptographic Modules

○ Follows the guidance in the ​Commercial National Security Algorithm Suite
regarding quantum resistant algorithms and key sizes.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2
https://csrc.nist.gov/CSRC/media//Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://csrc.nist.gov/CSRC/media//Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

Page 19

● Each attester device has the following properties:

○ Each attester device ​MUST​ have a unique, and immutable device ID key pair.

○ Each attester device ​MAY ​be provisioned with a hash of the first mutable
firmware.

○ Each attester device ​MUST ​prevent exfiltration of device secrets through defined
interfaces.

○ The Provisioner ​MUST ​generate a certificate signed by its pCA private key, which
links the unique device identity with its Provisioner.

○ Each attester device ​MUST ​generate a certificate signed by the device ID private
key, which links the attestation public key with the device identity.

8.3. Device Ownership Provisioning

The first Device Owner provisions the attester device with a Device Update public key
(DevUpdtK​pub​). The attester device uses this key to verify the authenticity and integrity of
updates to the device’s critical configuration.

The device ownership provisioning operation should take place as early as possible in the
lifecycle of the attester device, ideally as soon as the identity of the device (DevIK​pub,pr​) is
established. Until the legitimate Device Update public key is provisioned, the attester device
is vulnerable to an attack in which an attacker’s own Device Update public key is provisioned,
then later authorizes malicious updates to the attester device.

Optionally, the Device Owner’s Certificate Authority generates a certificate over the device
identity public key (DevIK​pub​). If present, this certificate can be presented during attestation
operations to attest that an owner has taken ownership of the device.

The parties to this protocol are the Device Owner and the attester device. (Sometimes, the
Provisioner and the Device Owner are one and the same.)

8.3.1. REQUIREMENTS - Device Ownership Provisioning

● Each attester device ​MUST ​be provisioned with a Device Update public key, which is used
to verify updates to the device’s critical configuration.

● The Device Update public key, once provisioned on the attester device, ​MUST​ only be
modified through an authenticated ownership transfer.

● Each attester device ​MAY ​be provisioned with a Device Owner’s certificate over the
device identity public key.

● Each attester device ​MAY ​be provisioned with a hash of the device firmware.

● Each attester device ​MAY ​be provisioned with a hash of the Device Owner’s certificate
over the device identity public key.

Page 20

Page 21

The protocol diagram above shows the interaction between a newly provisioned attester
device and a Device Owner, as they interact to provision ownership information, attestation
credentials, and update verification keys for a device.

First, the Device Owner verifies that the device was provisioned by a trusted provisioner and
optionally issues its own certificate over the device’s unique identity public key.

Next, the device calculates a seed which will be used as input to the key generation function
for its attestation key. It can use the same UDS and key generation function as was used
when generating the device identity key (DevIK), but the key generation function must be
informed that the key is an authentication key, otherwise it would create a key pair identical
to DevIK.

In the DICE architecture, the attestation key is derived from the device firmware. If the device
firmware changes, then a new attestation key is regenerated. In this specification, including a
hash of the device firmware is optional. Another optional parameter to the key derivation
function is a hash of the Device Owner’s public key. If it is included and the owner changes,
then a new attestation key is regenerated.

Some attester devices may not be able to generate and sign an X.509 certificate. In an
alternative method, the device builds a lightweight TPM-style certificate containing the
attestation public key, then signs it using its device ID private key. This TPM-style certificate is
then sent to the Device Owner to be parsed, converted to an X.509 certificate, signed by the
Device Owner’s CA, and sent back to the device. Just as in the provisioning protocol above,
these operations must be carried out in a secure facility or in a trusted platform.

8.4. Discovery and Interrogation protocol

The platform determines what attester devices are present and their authentication and
attestation capabilities.

The platform begins to build a platform inventory of the attester devices present. (It
completes the inventory after the authentication and enrollment protocol.) Platforms should
be able to perform such a discovery as soon as power is up. On some platforms, discovery
would happen after the firmware completes device initialization. However, it is expected that
some platforms would perform early discovery, and sequence the startup process by holding
devices in reset until they are discovered and optionally checked for integrity, using a
sideband for the discovery. It is also expected that some devices may not support discovery
before they are taken out of reset, mainly for legacy and flashless devices, but for modern and
smart devices, this should be made possible.

Platforms can optionally hold the main data bus (i.e. PCIe) in reset while the platform
interrogates the attester devices. This process is referred to as a split reset sequence. In this
use case, the attester device is required to respond to requests while its main data bus
interface is held in reset. One example of this mechanism is to hold PCIe reset (PERST#)
asserted while the interrogation process occurs. The following diagram shows an example of
this sequence using PCIe as the main data bus. In the following diagram, the platform holds
PERST# asserted while attester devices are allowed to initialize their CPUs and firmware

Page 22

stacks. When the attester devices are ready to respond, the platform interrogates the attester
devices according to its policies. When the platform is complete with the interrogation and
satisfied with its results, the platform allows the attester devices out of reset.

Another possible reset sequence is for the platform to be held in a state that cannot cause
harm. This process is referred to as a unified reset sequence. In this case, the attester devices
are brought out of reset as normal and interrogated by the platform. When the platform is
complete with the interrogation and satisfied with its results, the platform is admitted into
production servicing, or allowed to move to its fully operational state. When using a unified
reset sequence, the previous diagram does not apply.

An implementation can also use an external root of trust chip that controls the attester device.
In such an implementation, the RoT chip controls the sequence of the attestation operations
and attester device reset. In this case, the platform initialization appears to be unaltered from
the perspective of the attester device.

This protocol is highly dependent on the specific technology of the platform, bus, and devices,
and thus is out of scope. The goal, however, is in scope. The goal is to build a platform
inventory containing a list of all security-relevant devices, whether or not they support
authentication and attestation, and, if they do, what commands they support.

8.4.1. REQUIREMENTS - Discovery and Interrogation

● Attester devices ​MUST​ be capable of communicating their authentication and
attestation capabilities to the platform.

● Attester devices ​SHOULD ​be capable of communicating their capabilities to the platform
within 15 seconds of being provided with power, even if their data plane bus (e.g. PCIe) is
held in reset by the platform.

● Platforms ​MUST ​be capable of interrogating potential attester devices and recording
their authentication and attestation capabilities.

Page 23

● Platforms ​MUST ​be capable of interrogating attester devices that do not communicate
their capabilities before being taken out of reset, e.g., by interrogating them later in the
boot cycle or by having them pre-configured as such, in the platform reference manifest.

● Platforms ​MAY​ use the message formats for GET_CAPABILITIES and
NEGOTIATE_ALGORITHMS as described in​ ​Security Protocol and Data Model (SPDM)
Specification​ or ​Device Capabilities​ ​as described in ​Project Cerberus Firmware
Challenge Specification​ .​ ​Where necessary, bridge components may be responsible for
translating from the native bus protocol into the GET_CAPABILITIES/
NEGOTIATE_ALGORITHMS message formats.

8.5. Authentication, Attestation, and Enrollment protocol

After the platform completes the interrogation phase, it authenticates attester device
identities, and completes an inventory of authenticated devices and their measurements.

In this protocol,

1. The platform authenticates the identity of each attester device by collecting (from the
device) and verifying the certificate chain of its attestation key, all the way back to the
Provisioner’s root public key pCA​pub​. This operation assures that the attestation key is
on a device that was provisioned by a trusted provisioner. For efficiency, the platform
may cache the digests of the certificates to avoid having to verify them again, and to
reduce the amount of storage required to store the entire chain.

2. The platform verifies that each attester device possesses and can use a private
authentication key corresponding to the certificate chain that was verified in the
previous step. Optimization allows a platform to skip re-verification of a certificate
chain. An attacker device may attempt to take advantage of this optimization by
presenting the certificate chain (and hash) of a good device. If so, then this step will
fail, because the attacker device cannot sign the challenge response with a private key
corresponding to the certificate hash in the response, which also matches the
certificate hash previously verified and cached by the platform.

3. The platform verifies the authenticity and integrity of measurements of the firmware
on authenticated attester devices.

4. The platform assembles an inventory of authenticated attester devices, their
identities, and their associated measurements.

5. The platform optionally compares the assembled inventory to a platform reference
manifest of expected devices and measurements.

6. Should any steps in the protocol fail, a platform-dependent action is taken, such as
admit the attested device, repair it, isolate or “fence” it, or disable it.

Example message formats and content are as described in ​Security Protocol and Data Model
(SPDM) Specification​ or ​Project Cerberus Firmware Challenge Specification​.

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus

Page 24

Page 25

8.5.1. REQUIREMENTS - Authentication, Attestation, and Enrollment

1. Attester devices ​MUST​ provide certificate digests and certificates when requested by the
platform.

2. Attester devices ​MUST​ build and sign responses to challenges from the platform.
Although this step is optional in the SPDM specification, it is required here.

3. Platform verifiers ​MUST ​request certificate digests and certificates from attester devices.

4. Platform verifiers ​MUST​ verify ASN.1 DER encoded X.509v3 certificates and certificate
chains from attester devices back to each device’s Provisioner root public key.

5. Platform verifiers ​MUST ​present challenges to attester devices and verify the content in
the responses.

6. Platform verifiers ​MUST ​verify attester device signatures on the challenge responses.

7. Platform verifiers ​MAY​ build a platform inventory containing authentication status,
firmware signing keys, firmware measurements, and Device Owners of attester devices.

8. Platform verifiers​ MAY ​accept a predefined manifest (an expected inventory of devices)
or build it dynamically.

9. Platform verifiers ​MAY​ compare the platform inventory to a platform manifest
containing expected devices and their configurations.

8.5.2. REQUIREMENTS - SPDM Standards Support

10. Attester devices that support the SPDM standard ​MUST​ conform to the set of capabilities

as defined in the table “Required Capabilities for SPDM.”

11. Attester devices that support the SPDM standard ​SHOULD ​support the set of algorithms
as defined in the table “Recommended Algorithms for SPDM”.

12. Attester devices that support the SPDM standard ​MUST ​support SPDM version 1.0 or
higher.

13. Attester devices that support the SPDM standard ​SHOULD ​support the current version.

Page 26

8.5.2.1. Required Capabilities for SPDM
The following table lists the SPDM capabilities, as defined in the CAPABILITIES
response, that are required for attester devices that are compliant with this
specification. Note, this table is based on version 1.1.0 of the SPDM
specification, and capabilities that are only defined in version 1.1.0 are not
required if the attester device does not support version 1.1.0.

8.5.2.2. Recommended Algorithms for SPDM

Attester devices are allowed a large number of algorithm combinations under
the SPDM Specification. To improve compatibility, attester devices should
follow the guidelines in this section.

Capability Description

CERT_CAP Supports certificate exchanges

CHAL_CAP Supports challenge

MEAS_CAP Supports MEASUREMENTS and should
support signed MEASUREMENTS (SPDM
MEAS_CAP = 10b)

Minimum Support

MeasurementHashAlgo TPM_ALG_SHA_384

BaseAsymAlgo TPM_ALG_RSASSA_3072

BaseHashAlgo TPM_ALG_SHA_256

Recommended Support

MeasurementHashAlgo TPM_ALG_SHA_512

BaseAsymAlgo TPM_ALG_ECDSA_ECC_NIST_P384

BaseHashAlgo TPM_ALG_SHA_384

Page 27

9. Measurement collection and storage
9.1. REQUIREMENTS - What to measure and what not to measure

● The measurements ​MUST ​include everything that affects the security of the attester
device, such as executable code, headers, security state and configuration data.

● The measurements​ MUST ​exclude information that will make the measurements brittle,
such as run-time configuration data that does not impact the security of the device, and
information which is expected to be updated frequently on the device.

Some measurements may not be obvious, may affect the security of the device, and
may or may not make the measurements brittle. For example, many flash devices
contain a foundry-installed serial number which could be included in the
measurements to detect flash replacement attacks (which can bypass flash
read-only protections).

9.2. REQUIREMENTS - Security-relevant configuration data

In the event that configuration data for the device may lead to compromise of the
security of the device (such as fuses or straps that enable JTAG or other test interfaces),
this class of configuration data ​MUST​ be discoverable from the device and/or cause the
measurements of the device to be distinguishable from production measurements. The
mechanism for detecting/providing this information to the attester device ​MUST ​be
enforced through pure hardware means.

Reset state
On attester device reset, the measurement registers ​MUST​ be cleared (reset to 0s) and a
measurement indicating an attester device reset event ​MUST​ be extended to the
measurement register.

Resetting the attester measurements independently from the system that it measures
MUST NOT ​be possible through a purely software mechanism (avoid separate reset and
power signals).

Security / integrity of the measurement storage
The measurement storage ​MUST ​be integrity protected to prevent malicious or
inadvertent modification, but it is not confidential.

Measurement logs
Measurement storage ​MAY ​include a structured log of measurements.
This log is used by the platform to derive and verify extended components or
measurements. The log may also contain unprotected metadata associated with the
measurements. Desirable properties of measurement logs are

● Tamper evident
● Tamper resistant
● Contains a sufficient number of events to support analysis
● Indicates the relative time spanned in the log

Page 28

The platform collects any logs it collects from attester devices. Additionally, the
platform may maintain a log which contains an aggregation of the state of the attester
devices. One such event log has been standardized by the Trusted Computing Group
(TCG). Tooling already exists that supports parsing and verifying TCG event logs. (See
section 5 of ​TCG EFI Protocol Specification​) Although the TCG logs are not a perfect
fit, platforms and attester devices may be able to map their events to TCG events and
measurement storage to platform configuration registers, in order to produce
standardized logs.

Algorithms for cumulative measurements

When multiple measurements are accumulated in one register, writes should update
the measurement register as follows:

 ​new value ≔ Hash (old value || input provided)

This calculation follows that of Trusted Computing Group’s “Extend” operation as
described in ​TCG EFI Protocol Specification​. Note that the size of “input provided” is
the same as the size of the digest of the hash algorithm. The size also must be
constant to avoid length extension attacks as described in
https://en.wikipedia.org/wiki/Length_extension_attack​ .

Security / integrity of object that was measured

Firmware (data and code) left exposed on external flash is vulnerable to time-of-check
time-of-use problems (TOCTOU). The problem is that it may be modified between the
time the verification is done, but before it is executed. Therefore, it must be validated
on EVERY read.

Devices with limited memory and execute-in-place devices are particularly vulnerable
to TOCTOU problems. If firmware must be staged or loaded in pieces, then it must
also be verified in stages or pieces, before it is executed.

9.3. REQUIREMENTS - When to Measure

Before execution, following a layered approach
Before executing or transferring control to mutable code, immutable code ​MUST​ record
measurements of the mutable code and of relevant configuration settings​. For example,
a read-only section of secure boot firmware on an attester device, before executing
the remainder of the device’s boot firmware stored in writable flash, must record a
hash of that writable firmware. It may also record the public key it used to verify the
digital signature on the writable firmware.

Next, the mutable code must record measurements and relevant configuration
settings of the next layer of mutable code (also ​before​ executing or transferring control
to it).

https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://en.wikipedia.org/wiki/Length_extension_attack

Page 29

Cold vs. warm boot

Devices should reset any measurement state, and perform a full boot from a hardware
root-of-trust whenever the device undergoes a full power-reset.

Resets and updates
If an attester device’s state changes (e.g., reset or chain of trust has become
invalidated), the attester​ MUST ​generate a signal or counter to notify the platform of the
change.

If the attester device’s state changes, the platform and device ​MUST ​repeat the complete
attestation protocol.

The device may maintain an optional non-volatile counter that is incremented on each
secure boot. This counter can be included in the set of values returned during
attestation, and can be used by the verifier to detect any unexpected device resets
(which could be indicative of suspicious activity). However, in certain power states,
some devices will reboot, thus inflating the counter and making it an unreliable
indicator of suspicious activity.

Dynamic modification of device
If a device allows for the runtime modification of any state that can affect the security
properties of the device, such modifications ​SHOULD ​be reflected in the measurements
and measurement logs of the device.​ Examples of such dynamic modification include
loading new firmware without rebooting the device, or enabling debug functionality
(that can affect the security state of the device).

Entry into Debug mode
If the activation of debug capabilities in the device can have security implications
(including ability to read or modify registers or memory, bypass secure boot
capabilities, load untrusted firmware, read performance state that can be used to
extract side-channel information, etc.), such an activation needs to be reflected in the
measurements and measurement logs.

It ​SHOULD NOT​ be possible for any debug mode to reset the measurement values, or
make arbitrary changes to them. ​Only extensions must be permitted.

Continuous monitoring
In order to support continuous monitoring by the platform,​ ​it is ​RECOMMENDED ​that
attester devices be able to respond to an attestation request at any time during the
device’s normal runtime operation.

11. Policies
When putting this specification into practice, there are many decisions that must be left to the
implementation. These decisions cover topics such as

● What to measure
● What authority is authorized to request attestations

Page 30

● What to do with devices with certificates that expired while sitting in a warehouse
● How to handle errors, e.g. ignore, log and keep going, or log and fail
● Whether to admit devices incapable of attestation
● Whether to admit immutable devices that cannot be updated (or smart devices that

may be masquerading as immutable ones)
● Whether to admit devices that can reset themselves without the intervention or

knowledge of the platform
● How to handle attested devices where attestation has not succeeded: e.g., admit it

with a notice of unsuccessful attestation, repair it, isolate or “fence” it, or disable it.

12. Glossary and Abbreviations
See ​Glossary and Abbreviations

13. Relevant standards, guidelines, and documents
[1] Approved Random Number Generators for FIPS PUB 140-2 Annex C (DRAFT) Security

Requirements for Cryptographic Modules
[2] Automated Proof for Authorization Protocols of TPM 2.0 in Computational Model (full

version)
[3] Bernstein D.J. et al. (2013) Factoring RSA Keys from Certified Smart Cards:

Coppersmith in the Wild. In: Sako K., Sarkar P. (eds) Advances in Cryptology -
ASIACRYPT 2013. ASIACRYPT 2013. Lecture Notes in Computer Science, vol 8270.
Springer, Berlin, Heidelberg.

[4] BCP 14 - Key words for use in RFCs to Indicate Requirement Levels
[5] Commercial National Security Algorithm Suite
[6] Cryptographic Key Length Recommendation
[7] Device Identifier Composition Engine (DICE) Architectures
[8] IEEE 802.1AR Secure Device Identity
[9] Implicit Identity Based Device Attestation v1 rev93

[10] Implementing DICE, Trusted Computing Group 3/20/2018
[11] Length Extension Attack​s
[12] NIST Special Publication 800-57 Part 1 Rev. 5, Recommendation for Key Management,

Part 1: General
[13] NIST Special Publication 800-90B, Recommendation for the Entropy Sources Used for

Random Bit Generation
[14] NIST Special Publication 800-108 Recommendation for Key Derivation Using

Pseudorandom Functions (Revised)
[15] NIST Special Publication 800-131a Rev. 2, Transitioning the Use of Cryptographic

Algorithms and Key Lengths
[16] NIST Special Publication 800-133 Recommendation for Cryptographic Key Generation
[17] NIST Special Publication 800-155 (DRAFT), ​BIOS Integrity Measurement Guidelines
[18] NIST Special Publication 800-193, ​Platform Firmware Resiliency Guidelines
[19] Open Compute Project, Project Cerberus Firmware Update Specification
[20] Project Cerberus Firmware Challenge Specification
[21] Reference Terminology for Attestation Procedures
[22] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels

https://docs.google.com/document/d/1NaWTRfXgNTiRzp8EnsYKjudo3z2lrdDK0dPyqer0DgU/edit#
https://csrc.nist.gov/CSRC/media//Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://csrc.nist.gov/CSRC/media//Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://eprint.iacr.org/2014/120.pdf
https://eprint.iacr.org/2014/120.pdf
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://tools.ietf.org/html/bcp14
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://www.keylength.com/en/4
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://1.ieee802.org/security/802-1ar/
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf
https://develop.trustedcomputinggroup.org/2018/03/20/implementing-dice/
https://en.wikipedia.org/wiki/Length_extension_attack
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://doi.org/10.6028/NIST.SP.800-108
https://doi.org/10.6028/NIST.SP.800-108
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-133r2
https://csrc.nist.gov/publications/detail/sp/800-155/draft
https://csrc.nist.gov/publications/detail/sp/800-193/final
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf
https://github.com/henkbirkholz/draft-birkholz-attestation-terminology
https://www.ietf.org/rfc/rfc2119.txt

Page 31

[23] RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, Section 4.2.1.3

[24] RFC 8174 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
[25] Secure Device Manufacturing: Supply Chain Security Resilience
[26] Secure Firmware Development Best Practices, July 2019
[27] Security Protocol and Data Model (SPDM) Specification version 1.0.0, 2019-12-11
[28] Security Requirements for Cryptographic Modules, FIPS 140-2
[29] Security Requirements for Cryptographic Modules, FIPS 140-3
[30] Security Requirements for PMCI Standards and Protocols
[31] TCG EFI Platform Specification For TPM Family 1.1 or 1.2, Specification Version 1.22

Revision 15, January 27, 2014
[32] TCG EFI Protocol Specification, Family“2.0”Level 00 Revision 00.13 March 30, 2016
[33] TCG Infrastructure WG TPM Keys for Platform Identity for TPM 1.2, Specification

Version 1.0 Revision 3, August 21 2015
[34] TCG TPM 2.0 Provisioning Guidance v1.0 rev 1.0, March 15, 2017
[35] TCG Trusted Platform Module Library Part 1: Architecture, Family “2.0” Level 00

Revision 01.59 November 8, 2019
[36] USB Authentication Specification Rev. 1.0 with ECN and Errata through January 7,

2019
[37] Universal Serial Bus Revision 3.2 Specification

14. License
OCP encourages participants to share their proposals, specifications and designs with the community.
This is to promote openness and encourage continuous and open feedback. It is important to
remember that by providing feedback for any such documents, whether in written or verbal form, that
the contributor or the contributor's organization grants OCP and its members irrevocable right to use
this feedback for any purpose without any further obligation.

It is acknowledged that any such documentation and any ancillary materials that are provided to OCP
in connection with this document, including without limitation any white papers, articles,
photographs, studies, diagrams, contact information (together, “Materials”) are made available under
the Creative Commons Attribution-ShareAlike 4.0 International License found here:
https://creativecommons.org/licenses/by-sa/4.0/​, or any later version, and without limiting the
foregoing, OCP may make the Materials available under such terms.

As a contributor to this document, all members represent that they have the authority to grant the
rights and licenses herein. They further represent and warrant that the Materials do not and will not
violate the copyrights or misappropriate the trade secret rights of any third party, including without
limitation rights in intellectual property. The contributor(s) also represent that, to the extent the
Materials include materials protected by copyright or trade secret rights that are owned or created by
any third-party, they have obtained permission for its use consistent with the foregoing. They will
provide OCP evidence of such permission upon OCP’s request. This document and any "Materials" are
published on the respective project's wiki page and are open to the public in accordance with OCP's
Bylaws and IP Policy. This can be found at

http://www.opencompute.org/participate/legal-documents/​.
If you have any questions please contact OCP.

https://www.ietf.org/rfc/rfc5280.txt
https://www.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/html/rfc8174
https://www.nccgroup.trust/uk/our-research/secure-device-manufacturing-supply-chain-security-resilience/
https://www.opencompute.org/documents/csis-firmware-security-best-practices-position-paper-version-1-0-pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://www.dmtf.org/sites/default/files/PMCI%20Security%20-%20Architecture%2012_17_18.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM_Keys_for_Platform_Identity_v1_0_r3_Final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM_Keys_for_Platform_Identity_v1_0_r3_Final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-TPM-v2.0-Provisioning-Guidance-Published-v1r1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
http://www.usb.org/developers/docs/
https://urldefense.proofpoint.com/v2/url?u=https-3A__creativecommons.org_licenses_by-2Dsa_4.0_&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=BqFCxDNyAJevHgEgYwZw0rORaVubZcDFycdZwrbjoCM&m=aUYQryq43waZK3h9DIgMN14XrhMhbo_6Ht75yJW-Q8U&s=RhUxk6cjNzY_kGHJDCD2C7NRTSjWqbkWY5_Uw5aOKqs&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.opencompute.org_participate_legal-2Ddocuments_&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=BqFCxDNyAJevHgEgYwZw0rORaVubZcDFycdZwrbjoCM&m=aUYQryq43waZK3h9DIgMN14XrhMhbo_6Ht75yJW-Q8U&s=kIIJXCIbpOXyWf1GiaHJEjvGGeIcRyYOVHnjt5fjTXE&e=

Page 32

15. About Open Compute Foundation
The Open Compute Project Foundation is a 501(c)(6) organization which was founded in 2011 by
Facebook, Intel, and Rackspace. Our mission is to apply the benefits of open source to hardware and
rapidly increase the pace of innovation in, near and around the data center and beyond. ​The Open
Compute Project (OCP) is a collaborative community focused on redesigning hardware technology to
efficiently support the growing demands on compute infrastructure.​.​For more information about OCP,
please visit us at​ ​http://www.opencompute.org

http://www.opencompute.org/
http://www.opencompute.org/

Page 33

Appendix A - Summary of Requirements and Recommendations

A1. REQUIREMENTS - Conformance Statement

a. The manufacturer / Provisioner ​MUST ​provide a statement of conformance describing
how the attester device satisfies the critical requirements, follows the recommendations,
and selects from the choices allowed by this document.

A2. REQUIREMENTS - Keys, Entropy, and Random Bits

Symmetric keys, asymmetric keys, entropy, and random bits in the key table ​MUST

a. Follow recommendations in ​NIST Special Publication 800-57 Recommendation for Key
Management

b. Follow recommendations in ​NIST Special Publication 800-90A, Recommendation for
Random Number Generation Using Deterministic Random Bit Generators

c. Follow recommendations in ​NIST Special Publication 800-90B, Recommendation for the
Entropy Sources Used for Random Bit Generation

d. Follow recommendations in ​NIST Special Publication 800-133 Recommendation for
Cryptographic Key Generation

e. Follow the guidance in the ​Commercial National Security Algorithm (CNSA) Suite
regarding quantum resistant algorithms and key sizes.

f. Provide a statement of minimum key strength and cryptoperiods of the values in the key
table.

A3. REQUIREMENTS - Initial Provisioning Environment, Operations, and Equipment

a. Initial provisioning operations ​MUST ​be carried out in a trusted facility, in which a
secure channel between the Provisioner and the device is guaranteed.

b. The Provisioner ​MUST ​report which of the following provisioning methods is used:
{attester device self-generates both UDS and DevIK​pr ​,
Provisioner injects UDS and device self-generates DevIK​pr ​, or
Provisioner injects both UDS and DevIK​pr ​}.

c. Cryptographic algorithms and deterministic random bit generators ​MUST​ be validated

under the ​NIST Cryptographic Algorithm Validation Program (CAVP)

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program

Page 34

d. Cryptographic modules, if used, ​SHOULD​ be validated at overall level 2 or higher under

FIPS 140-2 SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES​ or ​Security
Requirements for Cryptographic Modules, FIPS 140-3

e. Entropy, random bits, symmetric keys, and private asymmetric keys ​MUST ​be generated

within the attester device itself, in a hardware security module, or locally, in a device
with the following properties:

i. Follows recommendations in ​NIST Special Publication 800-90A Rev 1,
Recommendation for Random Number Generation Using Deterministic Random
Bit Generators

ii. Follows recommendations in ​NIST Special Publication 800-90B,
Recommendation for the Entropy Sources Used for Random Bit Generation

iii. Follows recommendations in ​NIST Special Publication 800-133 Recommendation
for Cryptographic Key Generation

iv. Complies with ​Annex C: Approved Random Number Generators for FIPS PUB

140-2, Security Requirements for Cryptographic Modules

v. Follows the guidance in the ​Commercial National Security Algorithm Suite
regarding quantum resistant algorithms and key sizes.

f. Each attester device has the following properties:

i. Each attester device ​MUST​ have a unique, and immutable device ID key pair.

ii. Each attester device ​MAY ​be provisioned with a hash of the first mutable
firmware.

iii. Each attester device ​MUST ​prevent exfiltration of device secrets through defined
interfaces.

iv. The Provisioner ​MUST ​generate a certificate signed by its pCA private key, which
links the unique device identity with its Provisioner.

v. Each attester device ​MUST ​generate a certificate signed by the device ID private
key, which links the attestation public key with the device identity.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2
https://csrc.nist.gov/CSRC/media//Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://csrc.nist.gov/CSRC/media//Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

Page 35

A4. REQUIREMENTS - Device Ownership Provisioning

a. Each attester device ​MUST ​be provisioned with a Device Update public key, which is used
to verify updates to the device’s critical configuration.

b. The Device Update public key, once provisioned on the attester device, ​MUST​ only be

modified through an authenticated ownership transfer.

c. Each attester device ​MAY ​be provisioned with a Device Owner’s certificate over the

device identity public key.

d. Each attester device ​MAY ​be provisioned with a hash of the device firmware.

e. Each attester device ​MAY ​be provisioned with a hash of the Device Owner’s certificate
over the device identity public key.

A5. REQUIREMENTS - Discovery and Interrogation

a. Attester devices ​MUST​ be capable of communicating their authentication and
attestation capabilities to the platform.

b. Attester devices ​SHOULD ​be capable of communicating their capabilities to the platform

within 15 seconds of being provided with power, even if their data plane bus (e.g. PCIe) is
held in reset by the platform.

c. Platforms ​MUST ​be capable of interrogating potential attester devices and recording

their authentication and attestation capabilities.

d. Platforms ​MUST ​be capable of interrogating attester devices that do not communicate

their capabilities before being taken out of reset, e.g., by interrogating them later in the
boot cycle or by having them pre-configured as such, in the platform reference manifest.

e. Platforms ​MAY​ use the message formats for GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS as described in​ ​Security Protocol and Data Model (SPDM)
Specification​ or ​Device Capabilities​ ​as described in ​Project Cerberus Firmware
Challenge Specification​ .​ ​Where necessary, bridge components may be responsible for
translating from the native bus protocol into the GET_CAPABILITIES/
NEGOTIATE_ALGORITHMS message formats.

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf

Page 36

A6. REQUIREMENTS - Authentication, Attestation, and Enrollment

a. Attester devices ​MUST​ provide certificate digests and certificates when requested by the
platform.

b. Attester devices ​MUST​ build and sign responses to challenges from the platform.

Although this step is optional in the SPDM specification, it is required here.

c. Platform verifiers ​MUST ​request certificate digests and certificates from attester devices.

d. Platform verifiers ​MUST​ verify ASN.1 DER encoded X.509v3 certificates and certificate

chains from attester devices back to each device’s Provisioner root public key.

e. Platform verifiers ​MUST ​present challenges to attester devices and verify the content in

the responses.

f. Platform verifiers ​MUST ​verify attester device signatures on the challenge responses.

g. Platform verifiers ​MAY​ build a platform inventory containing authentication status,

firmware signing keys, firmware measurements, and Device Owners of attester devices.

h. Platform verifiers​ MAY ​accept a predefined manifest (an expected inventory of devices)

or build it dynamically.

i. Platform verifiers ​MAY​ compare the platform inventory to a platform manifest

containing expected devices and their configurations.

A7. REQUIREMENTS - SPDM Standards Support

a. Attester devices that support the SPDM standard ​MUST​ conform to the set of capabilities
as defined in the table “Required Capabilities for SPDM.”

b. Attester devices that support the SPDM standard ​SHOULD ​support the set of algorithms

as defined in the table “Recommended Algorithms for SPDM”.

c. Attester devices that support the SPDM standard ​MUST ​support SPDM version 1.0 or

higher.

d. Attester devices that support the SPDM standard ​SHOULD ​support the current version.

Page 37

A8. REQUIREMENTS - What to measure and what not to measure

a. The measurements ​MUST ​include everything that affects the security of the attester

device, such as executable code, headers, security state and configuration data.

b. The measurements​ MUST ​exclude information that will make the measurements brittle,

such as run-time configuration data that does not impact the security of the device, and
information which is expected to be updated frequently on the device.

A9. REQUIREMENTS - Security-relevant configuration data

a. In the event that configuration data for the device may lead to compromise of the
security of the device (such as fuses or straps that enable JTAG or other test interfaces),
this class of configuration data ​MUST​ be discoverable from the device and/or cause the
measurements of the device to be distinguishable from production measurements. The
mechanism for detecting/providing this information to the attester device ​MUST ​be
enforced through pure hardware means.

b. On attester device reset, the measurement registers ​MUST​ be cleared (reset to 0s) and a
measurement indicating an attester device reset event ​MUST​ be extended to the
measurement register.

c. Resetting the attester measurements independently from the system that it measures
MUST NOT ​be possible through a purely software mechanism (avoid separate reset and
power signals).

d. The measurement storage ​MUST ​be integrity protected to prevent malicious or
inadvertent modification, but it is not confidential.

e. Measurement storage ​MAY ​include a structured log of measurements.

A10. REQUIREMENTS - When to Measure

a. Before executing or transferring control to mutable code, immutable code ​MUST​ record
measurements of the mutable code and of relevant configuration settings​.

b. If an attester device’s state changes (e.g., reset or chain of trust has become
invalidated), the attester​ MUST ​generate a signal or counter to notify the platform of the
change.

c. If the attester device’s state changes, the platform and device ​MUST ​repeat the complete
attestation protocol.

Page 38

d. If a device allows for the runtime modification of any state that can affect the security
properties of the device, such modifications ​SHOULD ​be reflected in the measurements
and measurement logs of the device.

e. It ​SHOULD NOT​ be possible for any debug mode to reset the measurement values, or
make arbitrary changes to them.

f. It is ​RECOMMENDED ​that attester devices be able to respond to an attestation request at

any time during the device’s normal runtime operation.

