
.

Transaction and Link Layer Specification
for Bunch of Wires (BoW) Interfaces

Revision A
Version 1.0

18 April 2023



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Table of Contents
1. License 4
2. Compliance with OCP Tenets 6

2.1. Openness 6
2.2. Efficiency 6
2.3. Impact 6
2.4. Scale 6
2.5. Sustainability 6

3. Version Table 7
4. Scope 8
5. Introduction 9

5.1. References 10
6. Overview 10

6.1. Terminology 10
6.2. Background 12
6.3. Open Issues 15

7. Transaction Layer 15
7.1. System Interface 16

7.1.1. Bus Protocol Variants 16
7.1.2. Interface Profiles 17

7.2. Transaction Layer Packets 18
7.2.1. Header 18
7.2.2. Packet Formats 19

Idle Packets 19
Credit Packets 19
Message Packets 20
Virtual Wire Packets 20

7.3. Flow Control 21
8. Link Layer 22

8.1. TX Interface 22
8.1.1. Error Protection and Quantization 22

Generation and Check Matrices 24
8.1.2. Selection and Packing 27
8.1.3. Assignment 28

8.2. LLP Transfer Order 29
8.2.1. One Fragment 29

Date: 18 April 2023 Page 2



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

8.2.2. Two Fragments 30
8.2.3. Four Fragments 31

8.3. RX Interface 32
8.3.1. Alignment 32
8.3.2. Unpacking and Steering 32
8.3.3. Error Correction 32

8.4. Training 32
8.4.1. Granule Phase Alignment 33
8.4.2. Fragment Skew Alignment 36
8.4.3. Deskew FIFO 37

8.5. Link-Physical Interface 38
9. Memory-Mapped Register State 39

9.1. TX Interface 39
Interface Control and Status 39
Messages 40
Virtual Wire Inputs 40

9.2. RX Interface 41
Interface Control and Status 41
Messages 41
Virtual Wire Outputs 42

10. Error Handling 42
11. Reset 43

9.1. Hard Reset 43
9.2. Link Reset 44

9.2.1. Training and Link Reset Exit 44
RX_IDLE → RX_TRAIN and TX_IDLE → TX_TRAIN 44
TX_TRAIN → TX_IDLE and RX_TRAIN → RX_WAIT 45
TX_IDLE → TX_RUN and RX_WAIT → RX_RUN 45

9.2.1. Link Reset Entry 45
12. Clocking 46

Date: 18 April 2023 Page 3



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

1. License
Contributions to this Specification are made under the terms and conditions set forth in Open
Web Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution
License”) by:

VENTANA MICRO; BLUE CHEETAH ANALOG DESIGN; DREAMBIG SEMICONDUCTOR;
VERISILICON; NXP; D-MATRIX

Usage of this Specification is governed by the terms and conditions set forth in Open Web
Foundation Modified Final Specification Agreement (“OWFa 1.0”) (“Specification
License”).

You can review the applicable OWFa1.0 Specification License(s) referenced above by the
contributors to this Specification on the OCP website at
http://www.opencompute.org/participate/legal-documents/. ​​For actual executed copies of either
agreement, please contact OCP directly.

 Notes:

1) The above license does not apply to the Appendix or Appendices. The information in the
Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED
BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS,
IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO
THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED
AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES
WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE
IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT
RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN
ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING
OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL
OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY
CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION,
INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY
CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY
CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS
SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING

Date: 18 April 2023 Page 4

http://www.opencompute.org/participate/legal-documents/


Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Date: 18 April 2023 Page 5



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

2. Compliance with OCP Tenets
This specification intends to meet the OCP tenets as described in the following sections.

2.1. Openness

● This specification is unencumbered by technology license costs

2.2. Efficiency

● This specification describes a simple, low-overhead transaction and link layer framework
● The framework is compatible with OCP BoW specifications

2.3. Impact

● This specification enables design and implementation flexibility while retaining
interoperability, allowing for the creation of ecosystems of chiplet interfaces optimized for
specific use-cases

2.4. Scale

● This specification provides the flexibility to address many use-cases
● The framework scales from 10s of gigabits per second to 2+ terabits per second

2.5. Sustainability

● This specification introduces an open standard that enables vendors to build and
integrate domain specific accelerators that dramatically reduce overall system power and
area

Date: 18 April 2023 Page 6



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

3. Version Table

Date Version # Author Description

18 April 2023 1.0 David Kruckemyer Format using OCP
template

Date: 18 April 2023 Page 7



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

4. Scope
This document is the base specification for a de-facto standard.

What is in Scope:
1. Define a link layer protocol for the ODSA BoW mainband interface
2. Define a transaction layer framework for the ODSA BoW mainband interface
3. A mechanism to define the interface between the transaction layer and the core logic in

a chiplet

What is out of scope:
1. Link control (including status registers, to be defined in a separate specification)
2. Specific mappings of common protocols (to be defined in a separate reference

document)
3. The interface between a Link controller and the Link Layer and BoW PHY is not

specified in this document and is left to the implementation.

Date: 18 April 2023 Page 8



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

5. Introduction
This specification describes Revision A (or Rev A) of the transaction and link layers for ODSA
die-to-die (D2D) communication. The transaction and link layers form two parts of a layered
architecture using the ODSA bunch-of-wires (BoW) electrical interface and consisting of the
following:

● A protocol layer that defines communication between SoC IPs using industry-standard or
proprietary protocols

● A transaction layer that translates between protocol transfers or protocol packets defined
by a bus protocol and individual transaction streams and that manages the flow control
of those individual streams

● A link layer that converts between the individual transaction streams and a single
bitstream transmitted between chiplets

● A physical layer that performs the physical transmission of the single bitstream as
defined in the BoW PHY Specification

The interfaces between the various layers are defined as follows:

● System Interface - the interface to the SoC as defined by various bus protocols
● Transaction-Link Interface (TLI) - an intermediate interface between the transaction layer

and the link layer (this interface is not defined by this specification and is
implementation- specific)

● Link-Physical Interface (LPI) - the interface between the link layer and the physical layer
based on the slice logic interface as defined in the BoW PHY Specification

● BoW Interface - the electrical interface between the TX and RX PHYs as defined in the
BoW PHY Specification

The above layers and interfaces are illustrated below (layers in bold are described in this
document):

Date: 18 April 2023 Page 9

https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html
https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html
https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html


Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

ODSA D2D Layered Architecture

At present, the transaction layer and link layer are architected and optimized for the BoW
standard. In the future, these layers may be adapted to other physical layers.

5.1. References

● Bunch of Wires PHY Specification
○ https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html

6. Overview

6.1. Terminology

This specification uses the following terminology (FIXME: some definitions still to be updated):

● BoW interface -
● BoW slice - the basic unit of a BoW PHY consisting of 16 data lanes and a forwarded

source-synchronous differential clock
● Bundle - the unit of information transferred in a given direction (TX or RX) in a single

cycle between the link layer and all BoW slices in the physical layer; a bundle consists of
one or more fragments

Date: 18 April 2023 Page 10

https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html


Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

● Bus protocol channel -
● Bus protocol variant -
● Credit -
● D2D interface -
● Data rate - the number of bits transferred per second per lane
● Far-side - for a pair of chiplets, the D2D interface on the other chiplet
● FEC - forward error correction
● Fragment - the unit of information transferred in a given direction in a single cycle

between the link layer and a single BoW slice in the physical layer
● Granule - the 32b unit of quantization in the link layer
● Interface profile -
● Lane - a single data wire on a BoW slice
● Link - the logical connection between the link layers on two chiplets consisting of a

number of near-side TX slices and an equal number of far-side RX slices plus the same
or a different number of far-side TX slices and an equal number of near-side RX slices

● Link layer -
● Link layer packet (LLP) - the unit of information exchanged between the TX interface link

layer and the RX interface link layer; an LLP consists of a 32b header and a 480b
payload for a total of 16 granules

● Link-physical interface (LPI) -
● Near-side - for a pair of chiplets, the D2D interface on the given chiplet
● On-die interconnect -
● Physical layer -
● Protocol layer -
● Protocol layer packet - a packetized unit of information that consists of either a protocol

packet or a protocol transfer
● Protocol packet - for a packetized protocol, the unit of information transferred in a given

direction between the on-die interconnect and the D2D interface on a given protocol
channel

● Protocol transfer - for a non-packetized protocol, the unit of information transferred in a
given direction between the on-die interconnect and the D2D interface on a given
protocol channel

● Receive (RX) interface - the portion of the D2D interface that receives BoW data from
the far-side chiplet and transmits packets or transfers to an on-die interconnect

● Receive (RX) slice - a BoW slice on the RX interface
● System interface -
● Transaction layer -
● Transaction layer packet (TLP) - the unit of information exchanged between the TX

interface transaction layer and the RX interface transaction layer; a TLP consists of a
12b header and a variable length payload; TLP transmission is governed by credit-based
flow control

Date: 18 April 2023 Page 11



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

● TLP Class -
● TLP Stream -
● TLP Type -
● Transaction-link interface (TLI) -
● Transmit (TX) interface - the portion of the D2D interface that receives packets or

transfers from an on-die interconnect and transmits BoW data to the far-side chiplet
● Transmit (TX) slice - a BoW slice on the TX interface

6.2. Background

The transaction and link layers, along with the BoW physical layer, create a complete D2D
solution for die-disaggregation, where a monolithic SoC is divided into a set of constituent
chiplets, as illustrated below:

In order to ease system integration, the following goals were adopted for the D2D interface:

● Simplicity - build on the BoW physical layer, focus on die disaggregation (vs. package
integration), and eliminate complexities of CDR, CRC/retry, etc.

● Low latency - enable aggressive implementation techniques, and use FEC to eliminate
serialization overhead of CRC

● Scalability - support for different lane data rates and numbers of slices
● Portability - enable interfaces to be built with different implementation methodologies and

in different process technologies
● Extensibility - create a modular framework that can easily add features over time

A D2D interface consists of a transmit interface (or TX interface) and a receive interface (or RX
interface). On a given chiplet, the near-side TX interface transmits data to the far-side RX
interface on the opposite chiplet, while the near-side RX interface receives data from the
far-side TX interface on the opposite chiplet.

The following block diagram illustrates the TX interface on chiplet 1 and the RX interface on
chiplet 2. More details follow.

Date: 18 April 2023 Page 12



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

D2D Interface Block Diagram

A D2D interface is conceptually a layered architecture. This specification defines the transaction
and link layers, shown in the large light blue box above. The system interface, represented by
the upper horizontal dashed line, is the boundary between the on-die interconnect and the
transaction layer, while the link-physical interface (or LPI), represented by the lower horizontal
dashed line, is the boundary between the link layer and the physical layer.

The following functions are performed by the transaction layer:

● TX Interface Transaction Layer
○ Implement bus protocol responder functionality and flow control on the system

interface
○ Implement clock-domain crossings between the system interface clock domain

and the TX interface clock domain
○ Packetize information received on the system interface into transaction layer

packets (TLPs) and classify the TLPs into classes and streams
○ Manage flow control for each stream with the far-side RX interface

● RX Interface Transaction Layer

Date: 18 April 2023 Page 13



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

○ Manage flow control for each stream with the far-side TX interface
○ Depacketize TLPs into system interface information
○ Implement clock-domain crossings between the RX interface clock domain and

the system interface clock domain
○ Implement bus protocol requester functionality and flow control on the system

interface

In addition, the following functions are performed by the link layer:

● TX Interface Link Layer
○ Add error-correcting code (SECDED) and quantize TLPs
○ Select and pack eligible TLPs from different TLP streams into link layer packets

(LLPs)
○ Assign LLP fragments to PHY slice logic interfaces
○ Drive the link layer training pattern

● RX Interface Link Layer
○ Correct single-bit errors and detect double-bit errors in TLPs
○ Align LLP fragments received from different PHY slice logic interfaces
○ Unpack TLPs from LLPs
○ Sample the link layer training pattern

Based on the above functions, the encapsulation steps in the transaction and link layers for
various packets are illustrated in the following diagram:

Date: 18 April 2023 Page 14



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Packet Formats

The unit of information transferred on the system interface is known as a protocol layer packet,
which corresponds to a single bus protocol channel. One or more protocol layer packets are
encapsulated in a transaction layer packet (or TLP) that consists of a 12b header and a
payload. Based on the interface profile, each TLP belongs to a TLP stream, which is managed
by credit-based flow control, and a TLP class, which represents a collection of TLP streams.
Each TLP is protected with ECC check bits and is divided into 32b granules.

TLP granules from one or more TLP streams are packed efficiently into a 512b link layer packet
(or LLP) that consists of a 32b header and 15 32b granules. An LLP is divided into fragments
based on the number and serialization ratio of the BoW slices in the physical layer. The set of
fragments transferred on the link-physical layer interface is known as a bundle.

The physical layer, which incorporates one or more BoW slices, forms the foundation for the
transaction and link layers. Based on programmed ratios, each BoW TX slice serializes and
each BoW RX slice deserializes its respective fragment relative to the BoW interface. While the
link layer is responsible for aligning fragments received on different BoW slices, the physical
layer is responsible for aligning individual lanes within a slice. Additional information may be
found in the BoW PHY specification.

With the exception of any logic that may be implemented in the system interface clock domain,
the entire D2D interface is rate matched. Consequently, flow control is only implemented in the
transaction layer to avoid bus protocol deadlock due to head-of-line blocking (and to avoid
receive buffer overruns in the transaction layer). If necessary, an asynchronous clock domain
crossing between the on-die interconnect and the D2D interface may be implemented in the
transaction layer.

The remainder of this specification provides additional details on the transaction layer and link
layer.

6.3. Open Issues

● Complete definitions in the Terminology section
● Discovery for CRD (credit TLP) and MSG (message TLP) support
● Add error model assumptions and uncorrected error probability analysis
● Add state transition diagrams in the reset section

7. Transaction Layer
The transaction layer is responsible for communicating information transferred on the system
interface via transaction layer packets, or TLPs, on the transaction-link interface. A TLP is
identified by its TLP type and consists of a TLP header, which contains type and auxiliary
information, and a TLP payload, which contains bus protocol information. The minimum TLP

Date: 18 April 2023 Page 15

https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html


Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

payload size is 14b. One or more TLP types may be transferred within a TLP stream, which
preserves the order of TLPs from the TX interface to the RX interface. Individual TLP streams
implement credit-based flow control between the TX and RX interfaces and are non-blocking
with respect to each other. Finally, the set of TLP streams associated with a bus protocol is a
TLP class. (See the Transaction Layer Packets section for more information.)

The transaction layer also incorporates a virtual wire unit, or VWU. In a TX interface, the VWU
translates level-sensitive input wires on the system interface into TLPs, while in the RX
interface, the VWU translates TLPs into level-sensitive output wires on the system interface.
(See the Virtual Wire Packets section for more information.)

7.1. System Interface

The system interface transfers information between the transaction layer and the on-die system
interconnect via one or more bus protocols. Bus protocols may define one or more bus protocol
channels and some number of additional sideband signals, and each bus protocol may specify
its own flow control mechanism, e.g. valid-ready signals, credit-based flow control, etc. The unit
of information transferred on a bus protocol channel is known as a protocol layer packet.

To support a particular bus protocol, the transaction layer must implement the required
channels, sideband signals, and flow control mechanism for that bus protocol. In addition, the
transaction layer must preserve any required ordering semantics across bus protocol channels
and must guarantee forward progress of individual bus protocol channels where required.

This specification recommends that the total latency from the transmit system interface to the
receive system interface should be less than 10ns.

7.1.1. Bus Protocol Variants

Given the wide range of on-die interconnect use-cases, bus protocols support a wide degree of
configurability. For example, address and data widths may be different depending on the system
requirements. To support this configurability, this specification introduces bus protocol variants,
which specify the parameters of a bus protocol implementation.

Specifically, a bus protocol variant defines the following (see the sections on Transaction Layer
Packets and Flow Control for additional information about some of the terms below):

● The inclusion or exclusion of optional fields on the bus protocol channels
● The width of each field on the bus protocol channels
● The bundling and mapping of bus protocol channel fields into a protocol layer packet
● The encapsulation of one or more protocol layer packets into the payload of a TLP type
● The number of credits required to transmit a TLP type
● The use of the auxiliary field in the TLP header for each TLP type
● The definition of any additional TLP types for control information

Date: 18 April 2023 Page 16



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

● The assignment of TLP types into TLP streams

Additionally, the set of TLP streams specified by a bus protocol variant effectively defines the
corresponding TLP class.

When bus protocol channels are mapped to a TLP payload, the order of the signals that appear
on the bus protocol channel does not have to match the order of bits in the TLP. A bus protocol
variant defines the mapping between the system interface signals and the TLP payloads to
ensure interoperability.

7.1.2. Interface Profiles

To ensure full interoperability between chiplets, this specification also introduces interface
profiles. An interface profile defines the complete system interface, and D2D interfaces on
different chiplets may interoperate if they support a common interface profile.

Specifically, an interface profile specifies the following (see the section on Transaction Layer
Packets for more information):

● The inclusion of any standard bus protocol variants
● The definition of any custom bus protocol variants
● The combination of TLP streams from the supported bus protocol variants
● The support for credit (CRD) and message (MSG) TLPs
● The number and assignment of virtual wires and the reset state of each virtual wire

An interface profile incorporates one or more bus protocol variants, each of which may be a
standard bus protocol variant adopted by the ODSA or may be a custom bus protocol variant
defined by the interface profile. If more than one bus protocol variant is considered, the interface
profile defines how the protocol channels from each bus protocol variant may be combined. In
particular, the interface profile may map the channels from different variants to separate TLP
streams, or the interface profile may define modes so that the channels from different variants
may share the same TLP stream. For example, an interface profile may support boot-time
configuration of bus protocol A or bus protocol B, and in such a profile, the configuration would
determine whether a given TLP type and stream corresponds to information from bus protocol A
or bus protocol B.

Note: Protocol channels may share a TLP stream as long as lack of forward progress on one
channel in the stream does not create a dependency that causes a deadlock in the system.

A D2D interface implementation may support one or more interface profiles, and an
implementation is allowed to define custom interface profiles that may or may not conflict with
the interface profiles standardized by the ODSA.

Note: This specification expects a rich variety of interface profiles to meet the requirements and
needs of various use-cases. Interface profile specifications may be open or proprietary, and they

Date: 18 April 2023 Page 17



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

may be more general or more specific. Over time, multiple ecosystems, based on the framework
introduced in this document, are expected to arise.

7.2. Transaction Layer Packets

The TLP header and the various control and virtual wire TLPs are described below.

7.2.1. Header

A TLP header consists of 12b that identify the type of TLP and provide auxiliary control
information. The format is illustrated below:

11 6 5 4 0

Type Rsv Aux

Note: The TlpHdr is likely to change from revision to revision. As a result, this specification is
erring on the smaller side for Rev A.

The Type field encodes the TLP type, which implies the TLP stream and TLP class. For the
common TLPs defined by this specification, the following table lists each TLP stream, the TLP
type, and the TlpHdr.Type field encoding.

TLP Class TLP Stream TLP Type
TlpHdr.Type

Encoding

Control None IDLE 0x00

CRD 0x01

MSG 0x02

Reserved Reserved Reserved 0x03

Virtual Wire None VWX 0x04

Reserved Reserved Reserved 0x05

Reserved 0x06

Reserved 0x07

Note: This specification will recommend standard TLP type encodings for common bus protocol
channels; however, these may be modified by specifications for individual bus protocol variants
and interface profiles.

Date: 18 April 2023 Page 18



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

The TLP payload may contain one or more protocol layer packets, and the TLP type identifies
the number of protocol layer packets encapsulated by the TLP. Unless otherwise specified by a
bus protocol variant, a TLP is assumed to encapsulate a single protocol layer packet.

Bus protocol variants and interface profiles may define additional TLP classes, streams, and
types but must not use TLP type encodings 0x00 to 0x07, which are reserved for this
specification, and 0x38 to 0x3F, which are reserved for custom interface profiles.

In general, TLP streams are managed by credit-based flow control, which prevents receive
buffer overruns and ensures non-blocking communication. The control and virtual wire packets
are guaranteed to be accepted by the RX interface, so those TLPs do not belong to a TLP
stream and do not require flow control credits. (See the Flow Control section for more
information.)

7.2.2. Packet Formats

This section describes the Aux field and TLP payload field for the defined TLPs.

Idle Packets
An idle TLP (IDLE) is inserted by the link layer to pad the remaining granules in an LLP (see
Selection and Packing for more information). For IDLE TLPs, the Aux field is reserved and must
be zeros.

The format of the TLP payload is illustrated below:

13 0

IdleData[13:0]

The 14b IdleData field is filled with all zeros.

Credit Packets
A credit TLP (CRD) grants up to 255 credits for a specific TLP type and support for CRD TLPs is
optional for interface profiles that define alternate methods for exchanging credits, i.e. in the Aux
field or in other TLPs. For CRD TLPs, the Aux field is reserved and must be zeros.

The format of the TLP payload is illustrated below:

13 8 7 0

TlpType[5:0] NumCrd[7:0]

The 6b TlpType field indicates the TLP type, which implies the TLP stream, while the 8b
NumCrd field conveys the number of credits from 0 to 255 that have been granted for that

Date: 18 April 2023 Page 19



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

stream. A CRD TLP that grants zero credits, i.e. NumCrd[7:0] = 0h00, is equivalent to an IDLE
TLP.

An interface profile may also define credit TLPs for a TLP class. The format of those credit TLPs
is defined by the interface profile.

Note: See the Flow Control section for more information.

FIXME: Discovery for CRD support.

Message Packets
The message TLP (MSG) transmits miscellaneous information from the TX interface to the RX
interface and support for MSG TLPs is optional. A MSG TLP is transmitted when 16b message
data are written to a memory-mapped register in the TX interface. When a MSG TLP is
received, the message data update a memory mapped-register in the RX interface.

For MSG TLPs, the Aux field contains 2b of message data:

4 3 2 1 0

Reserved MsgData[15:14]

The remaining bits in the Aux field are reserved and must be zero.

Additional message data is captured in the TLP payload and is illustrated below:

13 0

MsgData[13:0]

Note: The reserved Aux bits can be used to support up to 8 message types. Software or
hardware may use these to exchange information in-band. For example, two message types
could be used to implement a request-response protocol.

If a link layer implementation does not support MSG TLPs, the RX interface must ignore any
received MSG TLPs.

FIXME: Discovery for MSG support.

Virtual Wire Packets
The D2D interface supports the transmission of level-sensitive signal transitions on virtual wires
from the TX interface to the RX interface. A maximum of 1024 virtual wires can be supported.

Input signals are connected to the TX interface, and output signals are connected to the RX
interface. A high-to-low transition on an input signal causes a virtual wire low (VWL) TLP to be
transmitted, while a low-to-high transition on an input signal causes a virtual wire high (VWH)

Date: 18 April 2023 Page 20



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

TLP to be transmitted. When received, a VWL or VWH TLP causes the corresponding output
wire on the RX interface to be driven to the level signaled by the TLP.

Collectively, VWL and VWH TLPs are classified as VWX TLPs, which are always transmitted
and received in order for a given virtual wire. For VWX TLPs, the Aux field is reserved and must
be zeros.

The format of the VWX TLP payload is illustrated below:

13 12 10 9 0

Lvl Reserved VwId

The Lvl bit in the VWX packet indicates the level being transmitted and distinguishes between
VWL (Lvl = 0) and VWH (Lvl = 1) packets, while the VwId field identifies the virtual wire to which
the level corresponds. The remaining bits are reserved and must be zeros.

For each virtual wire, the TX interface registers the most recent signal transition and transmits a
virtual wire TLP corresponding to the transition. A signal transition is registered from the point
the input signal changes state to the point the VWX TLP has been accepted by the link layer. If
the input signal transitions while a previous transition is registered, a new virtual wire TLP,
corresponding to the new transition, is substituted for the registered virtual wire TLP. Once a
virtual wire TLP is accepted by the link layer, the transition is no longer registered.

Note: The TX interface schedules TLPs for transmission based on changes in the state of the
input signal, while the RX interface changes the state of the output wire based on the received
TLP. As a result, a received TLP may not result in a state change of the output wire if the TLP
matches the current state of the output signal.

The timing relationship among different input signal transitions on the TX interface is not
maintained among the corresponding output signal transitions on the RX interface.

Additionally, a TX interface memory-mapped register provides the status of each input signal
and the currently registered transition, while a RX interface memory-mapped register provides
the status of each output signal.

7.3. Flow Control

To transmit a TLP type that belongs to a TLP stream, a TX interface requires credits from the
far-side RX interface on the link. Credits are granted by the far-side RX interface to the TX
interface when the far-side RX interface is ready to accept a credited TLP in the corresponding
TLP stream. The number of credits required to transmit a TLP is defined by the TLP type, and
unless otherwise specified by a bus protocol variant, each TLP type requires a single credit. An

Date: 18 April 2023 Page 21



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

RX interface may grant up to 255 credits per TLP stream and may grant different numbers of
credits for different streams.

Note: Typically, a credit corresponds to a protocol layer packet, and the number of credits
required by a TLP type is determined by the number of protocol layer packets encapsulated by
the TLP. However, this specification does not require this correspondence, and a bus protocol
variant is allowed to assign any number of credits to a TLP type.

After link layer training (see Training) is complete, a near-side TX interface waits for credits from
the far-side RX interface, which grants credits via the far-side TX interface and the near-side RX
interface. Depending on the interface profile definition, credits are granted via credit packets, i.e.
a CRD TLP or a credit TLP specified by the interface profile, or via the TlpHdr.Aux field. Once
the credits are received, the near-side TX interface may begin transmitting TLP types
associated with the credits.

For best performance, an implementation should transmit credits using the following rules:

● When transmitting a TLP type in a given TLP class, the TlpHdr.Aux field should signal as
many credits as possible

● If credits are available to be transmitted, a credit TLP containing as many credits as
possible should be transmitted in lieu of an IDLE TLP

● The TX interface should employ a mechanism to transmit credits from a given TLP class
periodically if credits for that class cannot otherwise be transmitted

8. Link Layer
The link layer of the D2D interface is responsible for translating TLPs into link layer packets, or
LLPs, and for mapping the LLPs onto the available physical layer PHY slices. This layer also
performs error detection and correction.

The following sections describe individual functions as somewhat independent, but in practice,
the functions are performed in parallel to achieve low latency.

8.1. TX Interface

8.1.1. Error Protection and Quantization

Each TLP, which consists of a TLP header and a TLP payload containing one or more protocol
layer packets, is protected by SECDED ECC. The 12b TLP header and the first 14b of the TLP
payload are encoded into a 32b small codeword containing 6 check bits. After the first 14 bits of
the TLP payload are removed, any remaining TLP payload bits are divided into zero or more full
groups of 120 bits and zero or one partial group of up to 119 bits. Each full group is encoded
into a 128b large codeword containing 8 check bits.

Date: 18 April 2023 Page 22



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

The small codeword and the large codewords for full groups are calculated with the generation
matrices below. To determine the check bits for a partial group, the TX interface appends zeros
to pad the group to 120 bits and calculates the check bits based on the padded partial group.
These zeros are not transmitted with the TLP, and the bits in the partial group and the calculated
check bits for the padded partial group are concatenated and appended to the lower end of the
TLP.

Note: As an error protection scheme, FEC/ECC has the following advantages:

● Error detection and correction are performed in the RX interface, avoiding packet buffers
in the TX interface and complex retry mechanisms for error correction

● Codewords can be computed simultaneously with selecting TLPs in the TX interface and
independently from packing LLPs

● The RX interface can perform error detection on quantities smaller than an LLP and in
parallel across TLPs

Note: A 128b codeword is the smallest codeword that does not affect the effective data
bandwidth of the link given the decision to quantize TLPs into 32b granules (see below). Larger
codewords reduce the number of check bits transmitted but do not increase the effective data
bandwidth.

Note: With this scheme, the probability of an uncorrected error in one billion hours is less than
0.0005, assuming a 2 Tbps link with a raw BER of 10-15.

FIXME: Add table of error probabilities and description of error model

The formats of the small and large codewords appear below:

31 20 19 6 5 0

TlpHdr TlpPayload SmChk

Small Codeword (with TlpHdr)

127 8 7 0

TlpPayload LgChk

Large Codeword

Note: In the case of a partial group, the TlpPayload for a large codeword may contain fewer
than 120b; the omitted bits are assumed to be zero.

Once ECC has been added to a TLP, the protected TLP is quantized into 32b granules. If the
protected TLP is not a multiple of 32b, the TX interface appends zeros to the protected TLP to

Date: 18 April 2023 Page 23



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

extend the data to a multiple of 32b. Unlike the padding for ECC calculation, these zeros are
transmitted with the TLP.

Note: This padding is not protected by ECC, and the bits are discarded by the RX interface.

The following table lists the relationship between the number of granules in a given TLP and the
maximum number of payload bits in the TLP given the overheads introduced by adding the TLP
header and ECC check bits.

TLP Granules Max Payload (b) TLP Granules Max Payload (b)

1 14 17 494

2 38 18 518

3 70 19 550

4 102 20 582

5 134 21 614

6 158 22 638

7 190 23 670

8 222 24 702

9 254 25 734

10 278 26 758

11 310 27 790

12 342 28 822

13 374 29 854

14 398 30 878

15 430 31 910

16 462 32 942

TLP Granules and Maximum Payload Bits

Generation and Check Matrices
The small and large codewords are based on Hsiao codes, using a check matrix, C, and a
generator matrix, G, which is a submatrix of C. The transmitted codeword is the concatenation
of a dataword and additional check bits, calculated by multiplying the dataword by G. To
determine any errors in a received codeword, a syndrome is calculated by multiplying the
codeword by C. If the syndrome equals zero, no errors have occurred, but if the syndrome does
not equal zero, the type of error depends on the parity of the syndrome. A syndrome with odd

Date: 18 April 2023 Page 24



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

parity implies a single-bit, correctable error, and the value of the syndrome determines the bit in
error. On the other hand, a syndrome with even parity implies a multi-bit, uncorrectable error.

The check matrix, C, for the small codeword appears in the table below. The generator matrix,
G, corresponds to bits (columns) [31:6]. The final row shows the decimal syndrome values that
correspond to an error in a given bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0

1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0

1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0

1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0

0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1

62 61 59 55 47 31 56 52 50 49 44 42 41 38 37 35 28 26 25 22 21 19 14 13 11 7 32 16 8 4 2 1

Small Codeword Bits [31:0]
The check matrix, C, for the large codeword appears in the four tables below. The generator
matrix, G, corresponds to bits (columns) [127:8]. The final row in each table shows the decimal
syndrome values that correspond to an error in a given bit.

127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0

1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1

1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1

0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0

254 253 251 247 239 223 191 127 248 244 242 241 236 234 233 230 229 227 220 218 217 214 213 211 206 205 203 199 188 186 185 182

Large Codeword Bits [127:96]

95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0

1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1

0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1

Date: 18 April 2023 Page 25



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1

0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1

1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1

181 179 174 173 171 167 158 157 155 151 143 124 122 121 118 117 115 110 109 107 103 94 93 91 87 79 62 61 59 55 47 31

Large Codeword Bits [95:64]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0

224 208 200 196 194 193 176 168 164 162 161 152 148 146 145 140 138 137 134 133 131 112 104 100 98 97 88 84 82 81 76 74

Large Codeword Bits [63:32]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0

0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0

1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1

73 70 69 67 56 52 50 49 44 42 41 38 37 35 28 26 25 22 21 19 14 13 11 7 128 64 32 16 8 4 2 1

Large Codeword Bits [31:0]

8.1.2. Selection and Packing

A quantized TLP becomes eligible for transmission when a credit is available. The TX interface
selects eligible, quantized TLPs to pack into an LLP, which consists of a 32b header and 480b of

Date: 18 April 2023 Page 26



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

payload, for a total of 512b. The payload is packed as a series of TLP granules, subject to the
following rules:

● LLP contents:
○ An LLP must contain a maximum of one TLP header per TLP stream

■ Stated differently, at least one LLP header must appear between TLP
headers from the same stream

○ An LLP must contain a maximum of one credit TLP per TLP class
○ An LLP must contain a maximum of one virtual wire TLP
○ An LLP may contain any number of IDLE TLPs

● LLP format:
○ A TLP may start on any LLP granule
○ A TLP must be transmitted in contiguous granules, including TLPs that span two

(or more) LLPs
○ IDLE TLPs may be inserted between complete TLPs

Note: The above constraints imply that, when a TLP from a given stream spans LLPs, a new
TLP from that stream can appear in the the same LLP as the remainder of the previous LLP.

To ensure the forward progress of all streams, an implementation must ensure that the selection
of quantized TLPs does not introduce dependencies among streams. In particular, a lack of
credits on one stream must not block the progress on another stream.

An LLP has the following format:

511 0

HDR G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15

“Gxx” represents an LLP granule within the LLP. Higher order granules in a TLP are packed into
higher order granules in an LLP, i.e. no granule swizzling occurs when packing an LLP. “HDR”
represents the 32b LlpHdr field, which communicates the start-of-packet (SOP) information and
has the following format:

31 22 21 20 6 5 0

Reserved Rsv TlpStart HdrChk

Within the LlpHdr, the 15b TlpStart field indicates where a non-IDLE packet TlpHdr is located in
the LLP, i.e. bit [20] corresponds to G01, bit [19] corresponds to G02, etc. The 6b HdrChk field
contains the check bits for the LlpHdr, i.e. the LlpHdr is effectively a small codeword (see Error
Protection and Quantization above). All other bits are reserved.

Date: 18 April 2023 Page 27



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Note: Bit [21] is reserved for a “continuation” bit from the previous LLP if that information proves
to be valuable to an implementation.

Note: For IDLE packets, the corresponding TlpStart bit is not set in the LlpHdr. The RX interface
determines which granules contain IDLE packets based on the state of the TlpStart bits and the
number of TLP granules implied by the TlpHdr fields in those granules.

LLPs are presented to the physical layer in ascending granule order, i.e. HDR (or G00) is
presented before G01, and G01 is presented before G12, etc. This order corresponds to the
transfer order of the LLP.

8.1.3. Assignment

Once an LLP is packed, the granules in the LLP are assigned to fragments, which represent the
data width of the interface on an individual PHY slice based on the PHY serialization ratio. The
LLP header is always assigned to the least-significant bits, i.e. bits [31:0], of fragment 0, and the
remainder of the LLP granules are assigned as described in LLP Transfer Order.

The number of active PHY slices determines the size of a fragment bundle, which represents
the total number of bits transferred between the link layer and the physical layer per cycle on the
link-physical interface. The bundle type is a function of the number of PHY slices and the size of
each fragment, as illustrated in the table below.

Number of PHY Slices

1 2 4

Fragment
Size

(Ser. Ratio)

64b (4x) 1x64b
(64b)

2x64b
(128b)

4x64b
(256b)

128b (8x) 1x128b
(128b)

2x128b
(256b)

4x128b
(512b)

256b (16x) 1x256b
(256b)

2x256b
(512b)

4x256b
(1024b)

Fragment Bundle Types
Note: The 4x256b bundle type is not supported by Rev A.

The far-side TX and RX interfaces are required to support the same number of fragments;
however, the fragment widths may differ in each to accommodate different process technologies
and implementation methodologies. The assignment of granules to fragments is such that the
LlpHdr (i.e. HDR) is located in the same bits on the link-physical interface, independent of the
width of the fragment 0.

Date: 18 April 2023 Page 28



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Note: Since the data rates of the TX interface and RX interface must match, an interface with a
wider fragment must necessarily run at a lower frequency than an interface with a narrower
fragment.

Implementation Note: To support a variety of data rates and possible implementations, an
implementation must support all of these fragment configurations. The bundle type is boot-time
configurable.

The transmit order for LLPs is described below.

8.2. LLP Transfer Order

The LLP transfer order depends on the width of the fragment. For the narrowest fragment size
(i.e. 64b), granules are transmitted and received in order; however, for the wider fragment sizes
(i.e. 128b or 256b), granules are interleaved to accommodate different fragment configurations
on either the TX interface or the RX interface. Subsequent LLPs are transmitted or received in a
repeating fashion.

Note: The transmit and receive order is arranged to avoid buffering LLP granules across clock
cycles in either the TX or RX interface. Reordering of the granules is performed on the wider
interfaces since those operate at a lower frequency for a given data rate.

The following subsections illustrate the LLP transmit and receive order for different fragment
configurations, classified by the number of fragments.

Note: For the transfer order of granules within a fragment, see the Link-Physical Interface
section.

8.2.1. One Fragment

Note: The color coding below applies to this section only. In the following tables, T indicates
time in units of cycles, while FragN indicates a fragment number.

For a bundle type of 1x64b, an LLP is transmitted or received as follows:

T Frag0

0 G01 HDR

1 G03 G02

2 G05 G04

3 G07 G06

4 G09 G08

5 G11 G10

Date: 18 April 2023 Page 29



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

6 G13 G12

7 G15 G14

Bundle Type 1x64b
For a bundle type of 1x128b, an LLP is transmitted or received as follows:

T Frag0

0 G03 G02 G01 HDR

1 G07 G06 G05 G04

2 G11 G10 G09 G08

3 G15 G14 G13 G12

Bundle Type 1x128b
For a bundle type of 1x256b, an LLP is transmitted or received as follows:

T Frag0

0 G07 G06 G05 G04 G03 G02 G01 HDR

1 G15 G14 G13 G12 G11 G10 G09 G08

Bundle Type 1x256b

8.2.2. Two Fragments

Note: The color coding below applies to this section only. In the following tables, T indicates
time in units of cycles, while FragN indicates a fragment number.

For a bundle type of 2x64b, an LLP is transmitted or received as follows:

T Frag1 Frag0

0 G03 G02 G01 HDR

1 G07 G06 G05 G04

2 G11 G10 G09 G08

3 G15 G14 G13 G12

Date: 18 April 2023 Page 30



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Bundle Type 2x64b
For a bundle type of 2x128b, an LLP is transmitted or received as follows:

T Frag1 Frag0

0 G07 G06 G03 G02 G05 G04 G01 HDR

1 G15 G14 G11 G10 G13 G12 G09 G08

Bundle Type 2x128b
For a bundle type of 2x256b, an LLP is transmitted or received as follows:

T Frag1 Frag0

0 G15 G14 G11 G10 G07 G06 G03 G02 G13 G12 G09 G08 G05 G04 G01 HDR

Bundle Type 2x256b

8.2.3. Four Fragments

Note: The color coding below applies to this section only. In the following tables, T indicates
time in units of cycles, while FragN indicates a fragment number.

For a bundle type of 4x64b, an LLP is transmitted or received as follows:

T Frag3 Frag2 Frag1 Frag0

0 G07 G06 G05 G04 G03 G02 G01 HDR

1 G15 G14 G13 G12 G11 G10 G09 G08

Bundle Type 4x64b
For a bundle type of 4x128b, an LLP is transmitted or received as follows:

T Frag3 Frag2 Frag1 Frag0

0 G15 G14 G07 G06 G13 G12 G05 G04 G11 G10 G03 G02 G09 G08 G01 HDR

Date: 18 April 2023 Page 31



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Bundle Type 4x128b

8.3. RX Interface

8.3.1. Alignment

Based on the training patterns (see Training), the RX interface aligns the received fragments
using a deskew FIFO to form a bundle. The RX interface supports the bundle types defined in
the Assignment section, and the receive order for LLPs is described in LLP Transfer Order.

For each LLP, the RX interface link layer first decodes the LlpHdr to determine where the
granules containing a TlpHdr are located in the LLP, based on the TlpStart bits. Any errors in the
LlpHdr must be corrected in order to determine the proper location of the TlpHdr granules.

8.3.2. Unpacking and Steering

Once the TlpHdr granules have been located, the TLPs are unpacked from the LLP. The small
codewords containing the TlpHdr are corrected, if necessary, and the TLP granules are steered
to a given TLP processing pipeline depending on the TLP stream identified by the header. VWX
TLPs are steered to the appropriate virtual wire processing logic, and credit TLPs are steered to
the near-side TX interface to grant credits.

IDLE TLPs between the end of a non-IDLE TLP and the start of another non-IDLE TLP are
stripped.

8.3.3. Error Correction

Within a TLP processing pipeline, the large codewords are gathered and are corrected, as
necessary. Once all the granules are gathered, the TLP is presented to the transaction layer.

The behavior of the RX interface in the presence of corrected and uncorrected errors is
described in the Error Handling section.

8.4. Training

The link layer trains the D2D link to ensure the proper delivery of data. Performed after reset,
training entails transmitting a known data pattern from the TX interface and aligning the data
pattern in the RX interface. Alignment occurs at two levels:

● Granule phase alignment within a fragment (intra-slice)
● Fragment skew alignment within a bundle (inter-slice)

Granules within a fragment are serialized in the TX interface PHY slices and are deserialized in
the RX interface PHY slices. Phase alignment ensures that the serialization and deserialization

Date: 18 April 2023 Page 32



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

process is synchronized between the TX and RX interfaces so that the transfer order of
granules within a sequence of fragments is preserved.

In addition, fragments within a bundle are transmitted on different paths. Variations in these
paths may cause the granules transmitted in a given fragment to be received at different times
and be aligned to different clock edges of a common clock relative to the granules in other
fragments within the same transmitted bundle. Skew alignment ensures that granules in the
fragments for a given transmitted bundle are aligned to the same received bundles. Based on
the serialization and deserialization ratios, a transmitted bundle may represent part of a
received bundle, a single received bundle, or multiple received bundles.

To adjust for phase and skew mismatches, the TX interface drives a sequence of 0 (0x00) to
255 (0xFF) in each byte of each granule of each fragment, e.g. 0x00000000 is driven in the first
granule of each fragment, 0x01010101 is driven in the second, etc. The received sequence is
sampled on the RX interface to determine the granule phase and fragment skew, as described
in the following subsections.

Note: A 256b fragment consists of 8 32b granules, so the training sequence cycles through a
minimum of 32 fragments.

Note: For a given slice, the BoW PHY is responsible for training the individual lanes with
respect to the source-synchronous clock. The link layer assumes this level of training is
performed prior to training for granule phase alignment and fragment skew alignment.

8.4.1. Granule Phase Alignment

The phase of granules within a fragment is determined by dividing the training pattern value in a
given granule by the number of granules in the fragment. If the remainder of that computation is
equal to the granule number in the fragment, the phase is correct.

Note: In the following diagrams, only the sequence number of the byte, rather than the full
granule, is indicated for brevity. For example, 0x03 below implies 0x03030303 is transmitted in
the granule.

For a 64b fragment, the phase is correct if

● Bit [0] of the training pattern value in bits [31:0] of the fragment equals 0b0, and
● Bit [0] of the training pattern value in bits [63:32] of the fragment equals 0b1.

T Granule 1
[63:32]

Granule 0
[31:0]

0 0x01 0x00

1 0x03 0x02

2 0x05 0x04

Date: 18 April 2023 Page 33



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

3 0x07 0x06

Phase Aligned 64b Fragment

For a 128b fragment, the phase is correct if

● Bits [1:0] of the training pattern value in bits [31:0] of the fragment equals 0b00, and
● Bits [1:0] of the training pattern value in bits [63:32] of the fragment equals 0b01, and
● Bits [1:0] of the training pattern value in bits [95:64] of the fragment equals 0b10, and
● Bits [1:0] of the training pattern value in bits [127:96] of the fragment equals 0b11.

T Granule 3
[127:96]

Granule 2
[95:64]

Granule 1
[63:32]

Granule 0
[31:0]

0 0x03 0x02 0x01 0x00

1 0x07 0x06 0x05 0x04

Phase Aligned 128b Fragment
Phase errors are corrected via an implementation-specific mechanism in the physical layer. The
different types of phase errors received on the RX interface appear below:

T Granule 1
[63:32]

Granule 0
[31:0]

0 0x00 0xFF

1 0x02 0x01

2 0x04 0x03

3 0x06 0x05

4 0x08 0x07

Phase Misaligned 64b Fragment +180°

T Granule 3
[127:96]

Granule 2
[95:64]

Granule 1
[63:32]

Granule 0
[31:0]

0 0x02 0x01 0x00 0xFF

1 0x06 0x05 0x04 0x03

2 0x0A 0x09 0x08 0x07

Date: 18 April 2023 Page 34



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Phase Misaligned 128b Fragment +90°

T Granule 3
[127:96]

Granule 2
[95:64]

Granule 1
[63:32]

Granule 0
[31:0]

0 0x01 0x00 0xFF 0xFE

1 0x05 0x04 0x03 0x02

2 0x09 0x08 0x07 0x06

Phase Misaligned 128b Fragment +180°

T Granule 3
[127:96]

Granule 2
[95:64]

Granule 1
[63:32]

Granule 0
[31:0]

0 0x00 0xFF 0xFE 0xFD

1 0x04 0x03 0x02 0x01

2 0x08 0x07 0x06 0x05

Phase Misaligned 128b Fragment +270°

For a 256b fragment, the phase is correct if

● Bits [2:0] of the training pattern value in bits [31:0] of the fragment equals 0b000, and
● Bits [2:0] of the training pattern value in bits [63:32] of the fragment equals 0b001, and
● Bits [2:0] of the training pattern value in bits [95:64] of the fragment equals 0b010, and
● Bits [2:0] of the training pattern value in bits [127:96] of the fragment equals 0b011, and
● Bits [2:0] of the training pattern value in bits [159:128] of the fragment equals 0b100, and
● Bits [2:0] of the training pattern value in bits [191:160] of the fragment equals 0b101, and
● Bits [2:0] of the training pattern value in bits [223:192] of the fragment equals 0b110, and
● Bits [2:0] of the training pattern value in bits [255:224] of the fragment equals 0b111.

T Granule 7
[255:224]

Granule 6
[223:192]

Granule 5
[191:160]

Granule 4
[159:128]

Granule 3
[127:96]

Granule 2
[95:64]

Granule 1
[63:32]

Granule 0
[31:0]

0 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00

Phase Aligned 256b Fragment
Phase errors are corrected via an implementation-specific mechanism in the physical layer. The
different types of phase errors received on the RX interface are similar to those described above
for 64b and 128b fragments.

Date: 18 April 2023 Page 35



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

8.4.2. Fragment Skew Alignment

The relative skew between fragments is determined by comparing the training pattern values in
granules of the two fragments. If the training pattern values are equal in the corresponding
granules in each fragment, the fragments are aligned. This alignment is illustrated below:

T Fragment N+1 Fragment N

0 0x01 0x00 0x01 0x00

1 0x03 0x02 0x03 0x02

2 0x05 0x04 0x05 0x04

3 0x07 0x06 0x07 0x06

Skew Aligned 64b Fragments

T Fragment N+1 Fragment N

0 0x03 0x02 0x01 0x00 0x03 0x02 0x01 0x00

1 0x07 0x06 0x05 0x04 0x07 0x06 0x05 0x04

Skew Aligned 128b Fragments TX/RX Pattern

T Fragment N+1 Fragment N

0 0x07
0x06

0x05
0x04

0x03
0x02

0x01
0x00

0x07
0x06

0x05
0x04

0x03
0x02

0x01
0x00

Skew Aligned 256b Fragments TX/RX Pattern

Note: Each cell for the 256b fragment pattern represents a pair of granules.

Assuming fragments are synchronized to a common clock in the RX interface. examples of
single cycle skew errors on the RX interface are illustrated below:

T Fragment N+1 Fragment N

0 0xFF 0xFE 0x01 0x00

1 0x01 0x00 0x03 0x02

2 0x03 0x02 0x05 0x04

Date: 18 April 2023 Page 36



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

3 0x05 0x04 0x07 0x06

4 0x07 0x06 0x09 0x08

Single-cycle Skew Misaligned 64b Fragments (N+1 arrives late)

T Fragment N+1 Fragment N

0 0x03 0x02 0x01 0x00 0xFF 0xFE 0xFD 0xFC

1 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00

2 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04

Single-cycle Skew Misaligned 128b Fragments (N arrives late)

Skew errors are corrected by adjusting the delay a given fragment relative to other fragments
(see the subsequent section for more details).

8.4.3. Deskew FIFO

Skew alignment is achieved via a deskew FIFO in the RX interface. The deskew FIFO
synchronizes the received fragments to a common clock and allows the delay of individual
fragments to be increased or decreased with respect to other fragments. Synchronization and
delay adjustments are performed by an implementation-specific mechanism. The width of the
deskew FIFO matches the width of the maximum bundle type supported on the LPI.

When the RX interface is in the RX_IDLE state (see Reset), the deskew FIFO must ignore the
fragments received from the PHY slices; however, when the RX interface is in the RX_TRAIN
state (or any state other than RX_IDLE), the deskew FIFO captures the received fragments. In
both the RX_IDLE and RX_TRAIN states, the RX interface ignores the output of the deskew
FIFO, though in the RX_TRAIN state, the output is sampled periodically by training logic to
determine the phase alignment and the skew alignment of the training pattern.

The relative skew between fragments M and N can be determined by comparing the training
pattern values in byte 0 of each fragment. If the values are equal, the fragments are aligned. If
the value in fragment M (e.g. 0x08) follows the value of fragment N (e.g. 0x04) in the training
pattern, the delay of fragment M is increased or the delay of fragment N is decreased; on the
other hand, if the value in fragment M (e.g. 0x00) precedes the value of fragment N (e.g. 0x04)
in the training pattern, the delay of fragment M is decreased or the delay of fragment N is
increased. Although the amount of delay is generally equal to the relative difference between
the two values divided by the number of granules in the fragments, care must be taken when
the values may have wrapped from 0xFF to 0x00.

Date: 18 April 2023 Page 37



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Implementations that support only 1x bundle types do not require a deskew FIFO.

8.5. Link-Physical Interface

The link-physical interface consists of one, two, or four slice logic interfaces, as defined by the
BoW interface specification, and the link layer supports serialization and deserialization ratios of
4x, 8x, and 16x, which result in 64b, 128b, and 256b fragments, respectively. Fragments are
transferred on the least significant bits of the slice logic interface, and unused bits on the LPI are
driven to zero by the TX interface and ignored by the RX interface.

To enable interoperability, the link layer supports boot-time configuration of the number of active
slices and assumes the following physical organization and labeling of the individual slices
(assuming north-south orientation):

Chiplet A

RX3 TX3

RX2 TX2

RX1 TX1

RX0 TX0

Substrate

TX0 RX0

TX1 RX1

TX2 RX2

TX3 RX3

Chiplet B

The following slices are active for a given number of active slices:

● One active slice: TX0 and RX0
● Two active slices: TX0/TX1 and RX0/RX1
● Four active slices: TX0/TX1/TX2/TX3 and RX0/RX1/RX2/RX3

As described in LLP Transfer Order, Frag0 corresponds to TX0 and RX0, Frag1 corresponds to
TX1 and RX1, etc.

Date: 18 April 2023 Page 38



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Finally, the following table indicates the unidirectional link bandwidth achievable with different
data rates and serialization ratios:

Data Rate
1 lane

Ser/Des
Ratio

Slice
Logic

I/F

LL
Freq.

BW
1 Slice

BW
2 Slices

BW
4 Slices

2 Gbps

16x [255:0] 125 MHz

32 Gbps 64 Gbps

N/A

8x [127:0] 250 MHz
128 Gbps

4x [63:0] 500 MHz

4 Gbps

16x [255:0] 250 MHz

64 Gbps 128 Gbps

N/A

8x [127:0] 500 MHz
256 Gbps

4x [63:0] 1 GHz

8 Gbps

16x [255:0] 500 MHz

128 Gbps 256 Gbps

N/A

8x [127:0] 1 GHz
512 Gbps

4x [63:0] 2 GHz

16 Gbps

16x [255:0] 1 GHz
256 Gbps 512 Gbps

N/A

8x [127:0] 2 GHz 1024 Gbps

4x [63:0] N/A N/A N/A N/A

Cells with unsupported combinations of data rates, serialization/deserialization ratios, etc. are
shown in gray. An implementation must support all data rates but may support a subset of the
serialization and deserialization ratios.

The LPI on the far-side RX interface must preserve the order of fragments and the order of bits
within each fragment as presented on the LPI by the near-side TX interface.

9. Memory-Mapped Register State

9.1. TX Interface

The memory mapped register state in the TX interface is classified into groups by function
below. Major bullets indicate the necessary bits and fields, while sub-bullets provide more
information about the bits and fields.

Interface Control and Status
Note: In this section, state may be implemented in a single register or in multiple registers.

Date: 18 April 2023 Page 39



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

● Credit reset
○ See Link Reset

● PHY slice reset
○ Support for up to 4 slices (1b per slice)

● PHY slice ready
○ Support for up to 4 slices (1b per slice)

● Active slices
○ 1 slice (0b00)
○ 2 slices (0b01)
○ 4 slices (0b11)

● Fragment size
○ 64b (0b00)
○ 128b (0b01)
○ 256b (0b10)

● State
○ TX_IDLE (0b00) - transmitting idle LLPs
○ TX_TRAIN (0b01) - transmitting training pattern
○ TX_RUN (0b11) - transmitting data

Messages
Note: Link layer support for messages is optional; however, this specification envisions up to
eight message registers.

● TX Message
○ A write to this register generates a MSG TLP
○ Message data (16b) - the TX interface inserts this field into the message data
○ Other control bits may be defined

Virtual Wire Inputs
Note: In this section, state is defined for each specified virtual wire. State corresponding to
virtual wires that are not implemented is Reserved.

● Disable (32x 32b read/write registers)
○ If clear, a transition on the virtual wire input is registered
○ If set, a transition on the virtual wire input is not registered

■ A transition from 1-to-0 on the disable bit registers the current state of the
virtual wire input and causes a corresponding VWX TLP to be transmitted

○ Reset to 1

Date: 18 April 2023 Page 40



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

9.2. RX Interface

The memory mapped register state in the RX interface is classified into groups by function
below. Major bullets indicate the necessary bits and fields, while sub-bullets provide more
information about the bits and fields.

Interface Control and Status
Note: In this section, state may be implemented in a single register or in multiple registers.

● Credit reset
○ See Link Reset

● PHY slice reset
○ Support for up to 4 slices (1b per slice)

● PHY slice ready
○ Support for up to 4 slices (1b per slice)

● Active slices
○ 1 slice (0b00)
○ 2 slices (0b01)
○ 4 slices (0b11)

● Fragment size
○ 64b (0b00)
○ 128b (0b01)
○ 256b (0b10)

● State
○ RX_IDLE (0b00) - ignoring data
○ RX_TRAIN (0b01) - sampling training pattern
○ RX_WAIT (0b10) - waiting for sync LLP
○ RX_RUN (0b11) - receiving data

Messages
Note: Link layer support for messages is optional; however, this specification envisions up to
eight message registers.

● RX Message
○ A MSG TLP fills this register
○ Message data (16b) - the RX interface captures the message data into this field
○ Other control bits may be defined

Date: 18 April 2023 Page 41



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

Virtual Wire Outputs
Note: In this section, state is defined for each specified virtual wire. State corresponding to
virtual wires that are not implemented is Reserved.

● Disable (32x 32b read/write registers)
○ If clear, receipt of a VWX TLP modifies the virtual wire output accordingly
○ If set, receipt of a VWX TLP does not modify the virtual wire output
○ Reset to 1

The reset state, 0 or 1, for each virtual wire output is defined by the interface profile and should
match the reset state of the corresponding virtual wire input on the far-side TX interface.

10. Error Handling
The RX interface detects errors in LLP headers, TLP headers, and TLP payloads based on the
received ECC codewords. The ECC algorithm supports detection and correction of single-bit
errors and detection of all double-bit errors and certain additional multi-bit errors. Combining
both factors, errors are classified as one of the following:

● Corrected error
○ LLP header (32b ECC codeword)
○ TLP header (32b ECC codeword)
○ TLP payload (128b ECC codeword)

● Uncorrected error
○ LLP header (32b ECC codeword)
○ TLP header (32b ECC codeword)
○ TLP payload (128b ECC codeword)

The signaling and handling of these errors in a system is implementation-specific.

Critical errors imply the following loss of payload and/or credits, depending on the location of the
error:

● LLP header - loss of payload for multiple unknown streams and loss of credits for
multiple unknown streams

● TLP header - loss of payload for a single unknown stream and loss of credits for multiple
unknown streams

● TLP payload - loss of payload for a single known stream

The loss of any information on the D2D interface is likely to result in system failure, and a
system reboot may be required to return to normal operation. To avoid propagating corrupted
payload information, the RX interface drops the following granules based on the location of the
error:

● LLP header:

Date: 18 April 2023 Page 42



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

○ All granules in the current LLP after any granules from a previous TLP that
continues into this LLP

○ All granules in subsequent LLPs up to the next TLP header as indicated by the
next TlpStart bit in a subsequent error-free LLP header

○ Note: Basically, the granules that are discarded start with the granule after the
last known good TLP in a previous LLP and end with the granule before the next
known good TLP in a subsequent LLP

● TLP header:
○ All granules from the TLP header with the error up to the next TLP header as

indicated by the next TlpStart bit in the current LLP or a subsequent LLP
● TLP payload:

○ All granules from the current TLP; however, the information in the TlpHdr field is
preserved

○ Note: In the case of TLP payload errors, the TLP header information is still valid,
so the near-side credit corresponding to the stream and the far-side credits in the
header are not lost

Granules between valid TLPs must also be checked for errors. Errors in these granules are
considered to be corrected errors whether the detected errors are single-bit, double-bit, or more.

Note: In general, these granules are filled with IDLE TLPs, but errors may change the decode of
the TLP. The RX interface must use the framing information provided by the LLP and TLP
headers to determine whether the intervening granules are valid.

11. Reset
The D2D interface supports two types of reset states: hard reset and link reset. These reset
states are defined by various combinations of external signals and internal state.

9.1. Hard Reset

An implementation may have one or more external reset signals that initialize different logic
blocks. The hard reset state is characterized by the assertion of all implemented external reset
signals. In the hard reset state, all state required for specified and deterministic operation of the
transaction layer, link layer, and physical layer must be initialized. If any TX or RX interface
enters the hard reset state, all TX and RX interfaces on the link must also enter the hard reset
state eventually. The hard reset state also puts a TX or RX interface into the link reset state.

Once all TX and RX interfaces have been in the hard reset state for an implementation-specific
amount of time, the external reset signals may be deasserted, after which point the TX and RX
interfaces remain in the link reset state. Before link training is performed, the physical layer must

Date: 18 April 2023 Page 43



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

be initialized and the LPI must be configured based on the number of active slices, the
serialization or deserialization ratio, etc.

9.2. Link Reset

A TX interface is in the link reset state when all of the following conditions are true:

● The TX state is TX_IDLE
● The TX credit reset bit is set
● The TX virtual wire inputs are disabled

In the TX_IDLE state, the TX interface transmits idle LLPs, or LLPs consisting of only IDLE
TLPs. In addition, when the TX credit reset bit is set in a TX interface, the credit counters are
reset to zero, i.e. no credits have been granted to the TX interface.

The RX interface is in the link reset state when all of the following conditions are true:

● The RX state is RX_IDLE
● The RX credit reset bit is set
● The RX virtual wire outputs are disabled

In the RX_IDLE state, the RX interface must not sample the received fragments from the slices,
i.e. registers must not capture data. In addition, when the credit reset bit is set in an RX
interface, the credit counters are reset to an implementation-specific number, i.e. all credits have
been returned to the RX interface.

Note: The TX and RX interface states are set independently of the TX and RX credit reset bits.

Note: The hard reset state initializes the state that causes the TX and RX interfaces to be in the
link reset state.

If any TX or RX interface enters the link reset state, all TX and RX interfaces on the link must
also enter the link reset state eventually.

While in the link reset state, the memory-mapped registers in the TX and RX interfaces must be
accessible so link training may be performed and the link reset state can be exited.

9.2.1. Training and Link Reset Exit

FIXME: Add state transition diagram

RX_IDLE → RX_TRAIN and TX_IDLE → TX_TRAIN
To begin training a link, each RX interface transitions to the RX_TRAIN state, activating the
deskew FIFO in each interface, and then each TX interface transitions to the TX_TRAIN state,
initiating the transmission of the training pattern. Samples are taken from the output of the
deskew FIFO, and the phase of the granules and the skew of the fragments are adjusted (see

Date: 18 April 2023 Page 44



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

the Deskew FIFO section). This process repeats until both the phase and skew are aligned;
however, if alignment cannot be achieved in either RX interface, the TX and RX interfaces on
the link are put into the link reset state, and system-specific mitigations are taken.

TX_TRAIN → TX_IDLE and RX_TRAIN → RX_WAIT
Once alignment has been achieved, each TX interface transitions to the TX_IDLE state and
clears each TX credit reset bit. After the idle LLPs have propagated to the far-side RX
interfaces, each RX interface transitions to the RX_WAIT state and clears each RX credit reset
bit. At this point, an RX interface begins transferring credits to its near-side TX interface.

Note: An RX interface must not transition to RX_WAIT until idle LLPs have been received. This
occurs typically within 100 RX link layer clocks; however, the deskew FIFO output can be
sampled in the RX_TRAIN state to ensure that idle LLPs are being received.

TX_IDLE → TX_RUN and RX_WAIT → RX_RUN
After each RX interface has transitioned to the RX_WAIT state, each TX interface transitions to
the TX_RUN state, at which point the TX interfaces may begin transmitting LLPs with non-IDLE
TLPs. The first LLP transmitted with a non-IDLE TLP is known as the sync LLP, and
transmission of the sync LLP must occur in such a manner that the LLP header is received in
granule 0 of fragment 0, independent of the RX interface bundle type.

Note: Typically, the first non-IDLE TLP will be a credit TLP; however, any TLP may be the first
non-IDLE TLP.

While the RX interface is in the RX_WAIT state, an LLP header synchronization state machine
in the RX interface checks each received bundle for the sync LLP. Once the sync LLP is
detected, the state machine locks on the LLP header based on the RX interface bundle type,
and the RX interface transitions to the RX_RUN state. Otherwise, the RX interface remains in
the RX_WAIT state and checks the next received bundle.

Once all TX and RX interfaces are in the TX_RUN and RX_RUN states, respectively, the virtual
wire outputs on each RX interface are enabled, and then the virtual wire inputs on each TX
interface are enabled.

At this point, the link is fully operational.

9.2.1. Link Reset Entry

FIXME: Add state transition diagram. Note there still remains some unspecified behavior
regarding what state the virtual wires should be when the disable bits are set.

To put the TX and RX interfaces into the link reset state, the above process is roughly reversed.

First, for each TX interface, the virtual wire inputs are disabled, and the state transitions to
TX_IDLE. On the TX_RUN to TX_IDLE transition, a TX interface must complete sending any

Date: 18 April 2023 Page 45



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

LLPs or TLPs that are partially transmitted, and once those have been transmitted, the TX
interface no longer accepts TLPs and begins transmitting idle LLPs. Once each RX interface
begins receiving the idle LLPs, the virtual wire outputs are disabled, and the RX interface
transitions to the RX_IDLE state.

Once the TX interfaces and the RX interfaces are in the TX_IDLE and RX_IDLE states,
respectively, the link is idle, and no more credits are exchanged between the near-side TX
interface and far-side RX interface (though credits may continue to propagate from the RX
interface to the TX interface on the near-side). At this point, all TX and RX interfaces enter into
the link reset state once all the corresponding credit reset bits are set.

Note: Setting the credit reset bit resets the state of credits, so there is no requirement to ensure
that credits have been exchanged before the TX interface begins transmitting idle LLPs.

12. Clocking
Clocking in the transaction and link layers is a function of the data rate of the link, the
serialization ratio on the TX interface, and the deserialization ratio of the RX interface. On the
same side of the link, the TX and RX interfaces must have the same serialization and
deserialization ratios, respectively; however, on the opposite sides of the link, the TX and RX
interfaces may have different ratios.

On the TX interface LPI, the physical layer provides one TX slice clock per fragment at a
frequency determined by the serialization ratio, and all TX slice clocks must be synchronous
with respect to each other. On the RX interface LPI, the physical layer provides one RX slice
clock per fragment at a frequency determined by the deserialization ratio, but in this case, the
RX slice clocks are mesochronous with respect to each other. The RX interface implements an
RX common clock to which all received fragments are synchronized (see the Deskew FIFO
section for more details). The TX slice clocks in the TX interfaces on opposite sides of the link
must share a common point, i.e., at a minimum, there must be a shared reference clock source
for the PLLs that generate the TX slice clocks for the TX interfaces. Consequently, within the TX
and RX interfaces, all the slice clocks are either synchronous or mesochronous with respect to
each other, and the RX common clock may be synchronous, mesochronous, or asynchronous
with respect to the slice clocks.

Finally, the on-die interconnect may provide one or more system clocks on the system interface.
The system clocks may be synchronous, mesochronous, or asynchronous with respect to the
TX slice clocks and the RX common clock. If necessary, the transaction layer implements a
clock domain crossing between the system clocks and the TX slice clocks and between the
system clocks and the RX common clock.

Date: 18 April 2023 Page 46



Open Compute Project • Transaction and Link Layer Specification for Bunch of Wires (BoW) Interfaces

The following table summarizes these relationships, where S indicates a synchronous
relationship, M indicates a mesochronous relationship, and A indicates an asynchronous
relationship:

Clock TX slice
clock

RX slice
clock

RX common
clock

System
clock

TX slice
clock S M SMA SMA

RX slice
clock M M SMA N/A

RX common
clock SMA SMA S SMA

System
clock SMA N/A SMA SMA

Date: 18 April 2023 Page 47


